• ‘Armed with Science’ pilot episode features defense breakthroughs

    Army Research Laboratory Senior Scientist Steven Kilczewski shows The Pentagon Channel's Steven Greisiger how he uses an ultrasonic mixer, pictured, to combine raw materials that will later be melted in the furnace to form a glass. (Photos by TJae Gibson, U.S. Army Research Laboratory)

    By U.S. Army Research Laboratory public affairs


    ADELPHI, Md. (March 10, 2014) — The Pentagon Channel’s pilot episode of Armed with Science is airing at 9 a.m., 1 p.m., and 5 p.m. (ET), today, and will delve into Army Research Laboratory and Naval Research Laboratory science that shapes the future of defense.

    The show takes viewers inside the minds of military scientists who improve national defense with infrared imaging, robotic satellite repair and novel weapons design during its debut.

    Defense producers from the Defense Media Activity conceptualized the program to shed light on the “seed corn of science and technology,” or basic and applied science.

    “‘Armed with Science’ tells the military’s story about scientific discovery and innovation that begins decades before an application reaches the military market,” said Thomas Moyer, U.S. Army Research Laboratory public affairs director. “The pilot will be successful if it gets people thinking about technological advances for our nation’s warfighters.”

    The best kept secret in innovation is the scientists and engineers behind the military’s scientific breakthroughs, Moyer said. “The American public often has no idea of the research and development that military scientists tirelessly put into a single application to protect men and women in uniform.”

    The pilot episode explores the Army’s super materials that operate across a spectrum of extreme environments to protect Soldiers against threats they haven’t seen yet. The materials that scientists and engineers design at an atomic scale will make up game-changing electronics, munitions and armor for the military of the future.

    Jared Wright, an engineer II, prepares a glass container from molten glass he pulled from an extremely high temperature furnace.

    In the show’s second segment, host George Zaidan visits the NRL Space Robotics Laboratory where scientists are developing robotic technology that can help repair, reposition, or update satellites that are beyond human reach, about 20,000 miles higher than the Hubble Space Telescope. These satellites are critical for Navy and Marine Corps operations, but cannot be repaired in orbit currently.

    The show wraps up with “super vision,” or enemy detection made easier and faster with infrared radiated light that gives Soldiers the capability to see when there is zero visibility. It took countless hours and the aid of the Army’s super computers to make thermal image detection good enough to detect very cold objects and fast-moving targets. The Army scientists behind the technology talk about how the discovery was made.

    The Pentagon Channel will show encore airings of the pilot episode March 13, at 10:30 a.m., 2:30 p.m., 6:30 p.m., and 10:30 p.m. at http://www.pentagonchannel.mil/LiveStream.aspx.

    The U.S. Army Research Laboratory of the U.S. Army Research Development and Engineering Command is the Army’s corporate laboratory, consisting of more than 1,900 federal employees (nearly 1,300 classified as scientific and engineering) and is headquartered in Adelphi, Md. The laboratory’s in-house experts work with academia and industry providing the largest source of world-class integrated research and analysis in the Army. For more information, visit the ARL homepage or join the conversation on Twitter, Facebook and YouTube.

    RDECOM is a major subordinate command of the U.S. Army Materiel Command. AMC is the Army’s premier provider of materiel readiness – technology, acquisition support, materiel development, logistics power projection, and sustainment – to the total force, across the spectrum of joint military operations. If a Soldier shoots it, drives it, flies it, wears it, eats it or communicates with it, AMC delivers it.

    The U.S. Naval Research Laboratory is the Navy’s full-spectrum corporate laboratory, conducting a broadly based multidisciplinary program of scientific research and advanced technological development. The Laboratory, with a total complement of nearly 2,800 personnel, is located in southwest Washington, D.C., with other major sites at the Stennis Space Center, Miss., and Monterey, Calif. NRL has served the Navy and the nation for more than 90 years and continues to meet the complex technological challenges of today’s world. For more information, visit the NRL homepage or join the conversation on Twitter, Facebook, and YouTube.

    The Pentagon Channel's Stephen Greisiger captures Jared Wright, an engineer II, as he prepares a glass container from molten glass he pulled from an extremely high temperature furnace. Size, shape and composition all play an important role in the behavioral and material response of glass on the total armor design.

    The Pentagon Channel is the Department of Defense’s satellite television channel, and broadcasts military news and information programs to about 2.6 million members of the U.S. armed forces – active duty, National Guard and Reserve. It airs 24 hours a day, seven days a week. The Pentagon Channel is available to more than 1.3 million service members on more than 370 military bases, camps and installations in the U.S. The channel is also available to the 800,000 service members and their families serving overseas in 177 countries via the American Forces Radio and Television Service.

    The Pentagon Channel reaches more than 30 million households through commercial distribution on satellite and cable systems nationwide. DISH Network, Verizon FiOS and divisions of Comcast, Time Warner, Cox, Charter, Mediacom, RCN, Armstrong, Midcontinent, Knology, GCI, and a number of smaller cable companies and local access channels in communities around the country carry the Pentagon Channel. In addition, Pentagon Channel programming is streamed live 24/7 at http://www.pentagonchannel.mil, and its programming is available on video-on-demand, and podcast from this website.

    Read more »
  • ‘More’ is Better

    Sgt. Zachary McDonell, an infantryman with 1st Battalion, 506th Infantry Regiment “Red Currahee,” 4th Brigade Combat Team (BCT), 101st Airborne Division (Air Assault), climbs a mountain trail with fellow Currahees on a joint patrol with Afghan National Army soldiers in Paktia province, Afghanistan, Oct. 21, 2013. High altitudes are one of the conditions for which MORE is designed, specifically with high carbohydrate content to combat acute mountain sickness. (U.S. Army photo by Staff Sgt. Todd A. Christopherson, 4th BCT Public Affairs)

    At warfighters’ request, Army delivers award-winning ration enhancement to help them in extreme conditions


    By Mr. Joseph Zanchi and Ms. Alexandra Foran


    Warfighters in extreme, demanding operational environments need additional sustenance to complete their missions successfully—they simply need MORE. In this case, MORE is the Modular Operational Ration Enhancement, developed by the Combat Feeding Directorate (CFD) at the U.S. Army Natick Soldier Research Development and Engineering Center (NSRDEC) as a direct result of requests from warfighters deployed in Iraq and Afghanistan.

    “We received feedback from the field that some warfighters were losing weight and they needed extra calories,” said Julie Smith, a CFD senior food technologist. Smith, along with Jim Lecollier, chief of the Individual Rations Branch, Defense Logistics Agency (DLA) Troop Support, worked with their respective teams from 2008 through 2013 to develop the MORE family of ration supplements specifically to meet this need.

    MORE provides additional nutrition to warfighters operating in high-stress environments when their caloric requirements exceed those provided by their daily operational rations. MOREs are designed to augment the Meal, Ready-to-Eat (MRE), First Strike Ration (FSR) and Meal, Cold Weather/Long Range Patrol, as well as the family of Unitized Group Rations.

    The MRE satisfies the Army surgeon general’s strict requirements for nutrition in operational rations. Each MRE provides approximately 1,300 calories. An FSR, which replaces three MREs, has an average of 2,900 calories per ration. The MORE has an average of 1,110 calories per package.

    Julie Smith, a CFD senior food technologist, shows off MORE, which she helped to develop over the past five years to meet the caloric needs of Soldiers operating in extremes of heat, cold and altitude. (Photo by David Kamm, NSRDEC)

    Army Regulation 40-25, “Nutrition Standards and Education,” a joint regulation of the surgeons general of the Army, Navy and Air Force, establishes nutritional standards, termed “military dietary reference intakes,” for military feeding. Among these are nutritional standards for operational rations and restricted rations.

    When warfighters conduct dismounted operations in challenging terrain, carrying more than 100 pounds of equipment up and down the mountains of Afghanistan with elevations as high as 12,000 feet, they can burn significantly more calories than when operating at sea level.

    The MOREs are designed to provide the additional calories and nutrients to supplement their MREs or FSRs and give them the nutrition they need.

    Currently, there are two types of MOREs targeted for the different extremes of operational environments—high altitude and cold weather, and hot weather. Each type has three different varieties, for a total of six different MORE packs.

    CFD collaborated with the U.S. Army Research Institute of Environmental Medicine to understand the unique nutritional needs of warfighters in these operational environments, said Smith.

    “We reviewed literature and conducted focus groups to identify food preferences of warfighters when conducting missions in high altitude and cold weather, and hot weather environments.”

    Three MREs a day provide warfighters with a minimum of 3,600 calories, satisfying their nutritional needs for most missions. “However, there are some instances during exceptionally heavy activity where warfighters will need between 4,500 and 6,000 calories per day,” said Smith. MORE provides that additional nutritional “oomph,” giving warfighters approximately 1,000 extra calories in a balance of carbohydrates, caffeine, electrolytes and vitamins for these operational environments.

    There are two types of MORE, one designed for high altitude and cold weather, and another intended for hot weather operations. Packs contain popular items including caffeinated pudding, carbohydrate-enhanced beverages, First Strike bars, nut mixes and Zapplesauce, which is applesauce fortified with maltodextrin, an energy-dense carbohydrate. (Photo by David Kamm, NSRDEC)

    The first MORE enhancement pack developed by CFD was the MORE – High Altitude/Cold Weather. At the time, military service representatives tasked CFD to develop an enhancement pack to counter weight loss and fatigue, and to improve the cognitive and physical performance of warfighters operating in the mountainous terrain of Afghanistan. Increased energy requirements during high-altitude operations, coupled with symptoms of acute mountain sickness, made this a challenging requirement to meet.

    Acute mountain sickness, with symptoms including anoxia, headache, nausea and vomiting, is caused by reduced air pressure and lower oxygen levels at high altitudes. The faster you climb to a high altitude, the more likely you are to get acute mountain sickness. “The MORE is designed to be high in carbohydrates to combat acute mountain sickness. Research has shown that consuming a diet high in carbohydrates can lower the symptoms,” said Smith.

    In hot weather environments, hydration is particularly important, which is why the MORE – Hot Weather includes two carbohydrate-and-electrolyte beverages. These two drinks are similar to sports drinks, providing not only pure energy in the form of carbohydrate, but also electrolytes such as potassium and sodium that warfighters sweat out. The electrolyte beverages are energy gels that come in mixed berry, orange and lemon-lime flavors. The carbohydrate beverages come in mixed berry, fruit punch and lemon-lime flavors.

    During the course of research and development on MORE, CFD conducted several focus groups and field evaluations. NSRDEC’s Operational Forces Integration Group and the Consumer Research Team collected feedback and input. Small focus groups involved warfighters from the 10th Mountain Division’s Light Fighter School at Fort Drum, NY, units that had deployed to Afghanistan and Army medical personnel.

    Additional component selection and survey participation on the design selection, acceptability, convenience and benefit involved warfighters from the U.S. Army Mountain Warfare Training School at Camp Ethan Allen, Vt., and the Connecticut National Guard’s 1st Battalion, 102nd Infantry Regiment Mountain Training Group.

    CFD received an urgent-need request from the U.S. Army Special Operations Command in 2009 for 10,000 units of MORE – High Altitude/Cold Weather to support the increase in troops deployed to Afghanistan.

    MORE – Hot Weather prototypes were field-tested with the 75th Ranger Regiment at the Pre-Ranger Course at Fort Benning, Ga.. MORE prototypes were also provided to special operations forces during high-altitude training in Colorado; deployed units of Combined Joint Task Force 82 in Afghanistan; and to Engineer and National Guard Scout units at Bagram Airfield, Afghanistan, during Operation Enduring Freedom.

    Afghan Border Police (ABP) and Soldiers from ABP Zone 1, 1st Brigade Combat Team, 101st Airborne Division hike from their landing zone to Observation Point 12 along the Afghanistan-Pakistan border, Jan. 21, 2013. Development of the MORE – High Altitude/Cold Weather involved warfighters from the U.S. Army Mountain Warfare Training School at Camp Ethan Allen, Vt., and the Connecticut National Guard’s 1st Battalion, 102nd Infantry Regiment Mountain Training Group. (U.S. Army photo by Sgt. Jon Heinrich, CT 1-101 Public Affairs)

    “We assessed results from individual ration field evaluations to identify ration components with the highest acceptability and consumption rates,” said Smith. “Feedback from warfighters indicated they preferred ration components that were easy-to-consume, eat-on-the-go, snack-type foods, rather than meals that would require time to heat and prepare.”

    Each pack is calorically dense and weighs only three quarters of a pound. Packs are filled with popular items including caffeinated pudding, energy gels, carbohydrate-enhanced beverages, First Strike bars, nut mixes, crackers, caffeinated gum and Zapplesauce, which is applesauce fortified with maltodextrin, an energy-dense carbohydrate and a source of energy to help maintain physical performance.

    “Zapplesauce and First Strike bars provide the warfighter with essential complex carbohydrate,” said Smith. Each food item serves a specific purpose for the warfighter. As with other operational rations, the goal is for the warfighter to consume every item to meet appropriate caloric needs.

    For their work in developing MORE, Smith and Lecollier received the prestigious Col. Rohland A. Isker Award in 2013 for leading their respective teams in developing, transitioning, acquiring and fielding MORE. The award is an annual honor from the Research and Development Associates for Military Food and Packaging, better known as R&DA, to recognize civilian employees of the federal government or military personnel for outstanding contributions to national preparedness. Isker, a pioneer in Army food service research and development, founded R&DA in 1946.

    “Our review board at R&DA felt the MORE project and the ultimate fielding of the ration supplement itself had the most beneficial impact on warfighters (Soldiers, Marines and special operators) of any recently introduced operational ration product,” said John McNulty, executive director of R&DA.

    “MORE met a very compelling need to introduce much-needed calories and other nutrients into the diets of these warfighters during particularly stressful situations on the battlefield during extreme weather conditions. It was a success story that worked and received very high accolades from the field,” McNulty said.

    MORE also provides warfighters with important enhancements to improve mental alertness and physical endurance and, like all CFD products, is “Warfighter Recommended, Warfighter Tested, and Warfighter Approved.” MORE is currently available for procurement through DLA Troop Support at http://www.troopsupport.dla.mil/subs/.

    For more information, contact Joseph Zanchi at joseph.a.zanchi.civ@mail.mil

    MR. JOSEPH ZANCHI is a logistics management specialist assigned to CFD at NSRDEC. He has a B.S. in business administration from Babson College and a certificate in project management from Boston University. Zanchi is Level III certified in life-cycle logistics.

    MS. ALEXANDRA FORAN is a public affairs contractor at NSRDEC. She holds a B.A. in writing and journalism from Eastern Nazarene College.

    Read more »
  • Soldiers say leadership critical in enhancing DCGS-A capabilities

    Soldiers who have used the Distributed Common Ground System - Army, both on and off the battlefield, say that with adequate training it's an intelligence game changer. (Photo illustration by Peggy Frierson)

    By David Vergun


    WASHINGTON (Army News Service, Feb. 24, 2014) — Soldiers who have used the Distributed Common Ground System-Army, both on and off the battlefield, say that with adequate training, it’s an intelligence game changer.

    Sgt. Troy Thatcher is one such user and proponent.

    While deployed with the 101st Airborne Division in Afghanistan, he was a junior analyst on a tactical intelligence ground collection team. He described how DCGS-A helped make his unit’s mission a success.

    Thatcher, then a specialist, went on daily patrols with the infantry, where he gathered intelligence. He then uploaded that data into DCGS-A, a system he said he used effectively.

    At the time, he said he thought he was playing just a small part in the intelligence-gathering process and he didn’t see the “big-picture” view of the system.

    Later, he learned that his data, when processed using the tools within DCGS-A, provided one of the many important pieces of the intelligence picture. He said DCGS-A conveys critical battlefield snapshots to brigade, division and corps commanders to aid in their decision making.

    Thatcher added that software tools within DCGS-A enable the analyst to format their information in any number of ways and that data to commanders can be presented in easily-understood formats, including tables, graphs and charts.

    Today, Thatcher works on DCGS-A geospatial-intelligence integration, training and development in Melbourne, Fla. He said he now shows others how valuable their inputs are to the intelligence gathering system and he thinks that helps motivate them to want to better understand and use it.

    The key to being able to use DCGS-A easily and effectively, he emphasized, is to have proper training.

    While proper training ensures successful use of DCGS-A, not everyone gets the same training opportunities and problems inevitably arise, he said.

    Sgt. Gregory Galperine, another DCGS-A user, said when he deployed to Afghanistan as a fusion/targeting analyst with the 4th Brigade Combat Team, 82nd Airborne Div., his unit didn’t receive all the training because of the high pre-deployment operations tempo.

    As a result, he said his brigade commander authorized the use of other commercial software. However, he said, DCGS-A was still the underlying architecture or framework for the intelligence gathering system used.

    When Galperine returned from Afghanistan, he got the DCGS-A training that he missed out on. As a result, he was able to design a two-week field training exercise for his battalion at Fort Bragg, N.C. He said that exercise provided valuable training for his junior analysts.

    Galperine said that training with DCGS-A is ongoing, however. Like marksmanship training, he said, DCGS-A requires a refresher now and then “because if you don’t use it, you can lose it.”

    Galperine explained that training for DCGS-A can be divided in two parts. First, users learn the “buttonology” portion. That includes learning the tools and what buttons to press to make things happen. Soldiers also learn the military intelligence aspect, which includes getting DCGS-A to produce the desired result from all the intelligence data gathered.

    Intelligence data ingested and processed by DCGS-A comes from multiple sources, including Soldiers on patrol, aircraft, and manned and unmanned sensors. The DCGS-A system connects and manages these intelligence-gathering resources in a networked grid that spans the globe. Soldiers use its fusions servers to process intelligence data and support multiple mission objectives.

    DCGS-A manages streams of information flowing back and forth throughout the “enterprise,” and additionally has access to and uses information provided by similar systems in use by sister services. When needed, DCGS-A also interacts with intelligence systems used by partner nations.

    With DCGS-A, intelligence now “resides on shared servers so everyone can access the same baseline of information,” said Chief Warrant Officer 3 Adrian Robertson, an all-source intelligence technician at Project Manager DCGS-A, Aberdeen Proving Ground, Md.

    Robertson, who has been doing military intelligence for 19 years in the Army, said in the past, intelligence systems had their own unique data feeds and repositories. In many cases, systems couldn’t communicate with each other. He termed it “stovepiping.” With DCGS-A, that is no longer the case.

    During a deployment to Iraq with the 25th Infantry Div., Robertson used DCGS-A and described it as a “revolution in military affairs,” because of the automation DCGS-A provided compared to the previous legacy systems he had experienced in his career.

    While Robertson said DCGS-A is not perfect, he said he has noticed significant improvements since he first started using it, and stated those improvements are mostly driven by feedback from Soldiers in the field.

    His team of contractors — former Soldiers who used DCGS-A while deployed themselves — see the feedback every day, and he said they incorporate a lot of it into new software releases.

    There are several ways, he said, that feedback is processed. Besides the after action review mechanisms that are in place following training, Soldiers can also access the DCGS-A User Forum, where they can ask questions, provide feedback to help other Soldiers, or share new ideas.

    In effect, the forum, which stood up about a year ago and is hosted by the Ground Intelligence Support Activity, has become a community for the users where ideas can be driven from the bottom up. System engineers monitor the forum and respond to technical questions.

    Robertson said he’s impressed with the creativity of today’s breed of analysts, who he said thrive in their outside-the-box thinking and are more technologically savvy than ever before.

    Thatcher shared some other examples of innovative solutions junior analysts provided, including a creative way of getting a TV feed to interface with other systems in DCGS-A. That solution was incorporated into the system.

    Innovative solutions can be shared and incorporated in a matter of hours. A junior Soldier really can make a difference, Thatcher said.

    Thatcher said user feedback was responsible for an important system-wide update that is being rolled out called “Hunte.” Hunte, he said, is replacing the Griffin software, which he said users complained was too complex and difficult to use.

    “You can ask any analyst who worked on both systems and they’ll tell you there’s a huge improvement from Griffin to Hunte,” he said. “And it won’t stop there. The PM is constantly collecting and testing feedback to look for ways to incorporate it.”

    Training and education are what most concerns Thatcher. He explained that even the best system won’t work unless the user has the necessary knowledge and expertise.

    The Army’s goal, Thatcher said, is to get everyone’s training completed before they go to the national training center or joint readiness training center. He added that this is becoming more doable as the drawdown in Afghanistan continues and battle formations stabilize.

    The biggest challenge now, Galperine said, is getting the word out to commanders that the training is necessary and time needs to be allotted for it.

    “It comes down to command emphasis,” he said. “Leaders must seize the opportunity.”

    He said it’s also up to his own team and every analyst to get the word out to their leaders that the training is valuable. He said they must also explain how success in using DCGS-A can ensure mission success.

    Galperine said that with proper training, Soldiers can develop “muscle memory” with DCGS-A, where usage becomes automatic, similar to the muscle memory a Soldier acquires with his or her rifle.

    “Commanders and MI leaders also need to start incorporating DCGS-A into daily operations to mitigate training deficiencies,” Robertson said, “Several units are already doing this.”

    Besides incorporating new software and solutions into DCGS-A — which is still in the developmental stage — plans are already underway to incorporate national strategic guidance into its framework, Robertson said.

    The Army’s strategic vision now calls for full-spectrum operations, he said. Engineers and technicians are developing new programs to meet anticipated threat characteristics like force-on-force.

    One new application currently fielded with Hunte, the Threat Characteristic Workcenter, will help build order-of-battle charts and better track conventional units in the hybrid threat environment, he said.

    But ultimately, Robertson said, the success or failure of DCGS-A boils down to good leadership. Leaders must give analysts the time needed to train, and commanders must take ownership of the system.

    Read more »
  • It Starts Here

    Student participants in the AEOP programs Gains in the Education of Mathematics and Science (GEMS), Science and Engineering Apprentice Program (SEAP) and College Qualified Leaders (CQL) enjoy a closing ceremony in September 2013 at Georgetown University in Washington, D.C.. Co-sponsoring the event were the Walter Reed Army Institute of Research and 100 Black Men of Greater Washington, D.C.. (Photo courtesy of 100 Black Men of Greater Washington, D.C.)

    Army educational outreach to build science, technology, engineering and math talent helps grow the workforce of tomorrow


    By Mr. Jeffrey D. Singleton and Ms. Andrea Simmons-Worthen


    The Army employs more than 800,000 military and civilian personnel, 96,000 of whom occupy science, technology, engineering or mathematic (STEM) positions, according to Defense Manpower Data Center classifications. Of that 96,000, more than 16,000 are world-class scientists and engineers within the Army’s 16 laboratories and research centers. These scientists and engineers develop leading-edge technologies and advanced capabilities that give our Soldiers, the Army’s greatest asset, the decisive advantage in the face of our adversaries and keep them safe from harm.

    Broadly defined to include jobs such as technicians that don’t require a bachelor’s degree, science and technology (S&T) occupations make up 21 percent of the nation’s workforce, and that percentage is increasing steadily, according to Georgetown University’s Center on Education and the Workforce. The Army and the nation have a growing need for highly qualified, STEM-literate technicians and skilled workers in advanced manufacturing, logistics, management and other technology-driven fields.

    But the need for STEM literacy—the ability to understand and apply concepts from science, technology, engineering and mathematics in order to solve complex problems—goes well beyond the traditional STEM occupations of scientist, engineer and mathematician. The U.S. Department of Labor predicts that in the next decade, 80 percent of jobs will require STEM skills, yet only 16 percent of college students pursuing bachelor’s degrees will be specializing in STEM fields.

    A student explores other student research at the September 2013 closing ceremony for participants in the AEOP programs GEMS, SEAP and CQL, at Georgetown University in Washington, D.C.. (Photo courtesy of 100 Black Men of Greater Washington, D.C.)

    Emerging mission requirements further complicate the challenges for the DOD STEM workforce. Multidimensional and cross-disciplinary STEM competencies are essential to supply technical talent in our research centers for emerging fields as well as to provide STEM-literate talent for the research and analysis work that the Army does continually across every field. In other words, the Army must prepare human capital for jobs that don’t yet exist, using technologies that haven’t yet been invented. The success and sustainment of this STEM infrastructure depends on the STEM-literate community to support innovation, further adding to the demand for STEM talent and accentuating the STEM challenge.

    The growing demand for STEM competencies, the global competitiveness for STEM talent and the unbalanced makeup of STEM fields have led to President Obama’s call for an all-hands-on-deck approach to the STEM challenge. Developing a highly competent STEM workforce requires partnerships among government, industry and academia. The Army makes a unique and valuable contribution to the national STEM challenge by providing access to its world-class technical professionals and research centers for students and teachers.

    The Army Educational Outreach Program (AEOP) manifests the Army’s STEM education strategy to ensure enduring access to highly qualified U.S. talent. AEOP provides a coordinated portfolio of STEM programs across S&T commands as well as government, university and industry partners. It offers students and teachers a collaborative, cohesive array of programs that effectively engage, inspire and attract the next generation of STEM talent from kindergarten through college, thereby exposing students to STEM careers in DOD.

    Students in the eCYBERMISSION program receive a warm welcome at the White House Science Fair from Dr. Patricia Falcone, associate director for national security and international affairs in the White House Office of Science and Technology Policy. The annual eCYBERMISSION competition, part of the AEOP, is a free online program to cultivate student interest in STEM by encouraging students in grades six through nine to develop solutions to real-world challenges in their areas. (Photo courtesy of DASA(R&T))

    Using the Army S&T workforce as mentors (either directly or through a near-peer mentor model), as well as our laboratories and research assets, the Army strives to build a diverse, well-prepared, STEM-literate talent pool to supply current and emerging workforce needs. This strategy, directed by HQDA, allows the Army to capture measures of success, identify program gaps, leverage resources and defend a sustainable STEM infrastructure.

    A young scientist’s experience illustrates the powerful potential of AEOP.

    Saumil Bandyopadhyay, a freshman at MIT, didn’t wait until graduation from Maggie L. Walker Governor’s School in Richmond, Va., to begin developing novel technologies for use by cutting-edge organizations.

    Bandyopadhyay became interested in optical processes in semiconductors at a young age, after reading about photodetectors and their use in lifesaving applications such as car-collision-avoidance systems, mine detection, night vision and missile defense. After learning about the challenges of making infrared photodetectors, he set out to solve one of the problems: to create a photodetector that could work at room temperature. He immersed himself in research over two summers. Bandyopadhyay’s dedication to the problem, several days a week, resulted in four peer-reviewed journal publications (he is lead author of two) and a provisional U.S. patent for his discovery of a novel photodetector.

    Students in the eCYBERMISSION program receive a warm welcome at the White House Science Fair from Dr. Patricia Falcone, associate director for national security and international affairs in the White House Office of Science and Technology Policy. The annual eCYBERMISSION competition, part of the AEOP, is a free online program to cultivate student interest in STEM by encouraging students in grades six through nine to develop solutions to real-world challenges in their areas. (Photo courtesy of DASA(R&T))

    His research—under the mentorship of Dr. Gary C. Tepper, chair of the Department of Mechanical and Nuclear Engineering at Virginia Commonwealth University, where Bandyopadhyay’s father, Supriyo, is Commonwealth Professor of Electrical and Computer Engineering—led to a new capability: a universal photon and particle detector built with semiconductor nanowires that can operate at room temperature and detect the entire electromagnetic spectrum. Its infrared detectivity is at least 10 times higher than that of other state-of-the-art equipment.

    Bandyopadhyay focused on making his detector ultrasensitive, rugged, reliable, inexpensive and mass-producible. Potential applications include detection of buried mines, monitoring of global warming, radiation therapy and homeland security.

    In all, Bandyopadhyay spent an estimated 1,600 hours on the project, all before his senior year. He immersed himself in research starting in seventh grade, including several years at the U.S. Army Engineering Research and Development Center in Alexandria, VA, through an AEOP high school internship initiative, the Science and Engineering Apprenticeship Program. He plans to major in electrical engineering and enter a career as a scientific researcher. By supporting Bandyopadhyay with the mentorship and facilities to expand his knowledge and allow him to explore solutions, we have capabilities today that we did not have just a couple of years ago.

    While every student who takes advantage of AEOP’s programs isn’t necessarily a Saumil Bandyopadhyay doing cutting-edge research in middle school, exposure to the STEM field and STEM professionals is critical to growing the next generation of STEM-literate young men and women who will form the Army’s workforce of tomorrow.

    Looking at the STEM challenge, John W. Gardner, former U.S. secretary of health, education and welfare, captured it best: “We don’t even know what skills may be needed in the years ahead. That is why we must train our young people in the fundamental fields of knowledge, and equip them to understand and cope with change. That is why we must give them the critical qualities of mind and durable qualities of character that will serve them in circumstances we cannot now even predict.”

    For more information on the AEOP, go to www.usaeop.com. For more information on the STEM challenge, see the Georgetown University Center on Education and the Workforce report “STEM”; and “An Interim Report on Assuring DoD a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce,” by the National Academy of Engineering and the National Research Council.

    MR. JEFFREY D. SINGLETON is director for basic research in the Office of the Assistant Secretary of the Army for Acquisition, Logistics and Technology, Deputy Assistant Secretary of the Army for Research and Technology (DASA(R&T)). He holds a B.S. in aerospace engineering from West Virginia University and an M.S. in aerospace engineering from Georgia Tech. Singleton is Level III certified in science and technology management and Level I certified in test and evaluation.

    MS. ANDREA SIMMONS-WORTHEN of Camber Corp. supports the DASA(R&T) as a senior program analyst. She holds a B.A. in psychology from Eastern Washington University.

    Read more »
  • Knowledge of Power Is More Power

    CERDEC electrical engineer Noel Pleta deployed to Afghanistan in support of Project Manager Mobile Electric Power serving as a power assessment engineer on a team responsible for assessing and improving the energy stability of forward-deployed units throughout Afghanistan. (U.S. Army photos courtesy of CERDEC)

    Assessments enable commanders to optimize energy, operational effectiveness


    By Edric Thompson


    When it comes to power and energy, Army research and development (R&D) continually seeks to develop solutions to increase performance, reduce consumption, increase efficiency and ensure power availability. However, the benefits of innovation cannot be leveraged to their fullest potential if the power grid is not set up properly, which may lead to redundancies, waste and safety issues. Unfortunately, in theater, this is the case more often than not.

    In August 2012, the U.S. Army Research, Development and Engineering Command (CERDEC) electrical engineers Noel Pleta and Jennifer Whitmore deployed to Afghanistan in support of Project Manager Mobile Electric Power (PdM MEP) where they served as power assessment engineers on a team responsible for assessing and improving the energy stability of forward-deployed units throughout Afghanistan. What they found were conditions so poor that they had to overhaul several combat outposts (COPs) and village stability platforms (VSPs) just to lay a sound power and energy foundation before implementing the new operational energy plans.

    “Many of the COPs were on their last leg of generator power causing them to shut down their sustainment of life support systems and focus on the tactical support systems. We found that backup power for tactical operation centers [TOCs] wasn’t consistent. If the TOC goes down, the mission is compromised as well as the Soldiers’ safety, and that’s a priority. That’s why it’s so important to do it right the first time,” said Pleta.

    The assessments, which included a detailed layout of the area, the state of current power sources and power consumption rates, allowed them to tailor optimized power grid plans, design new distribution systems, replace legacy systems with more efficient equipment, fix electrical issues that posed safety concerns and implement energy improvement plans that supported quality of life measures such as dining facilities and latrines.

    “We need to view energy requirements as a commodity and focus more on decreasing demand in addition to the efforts to increase supply.”

    For 13 years, the CERDEC Command, Power & Integration (CP&I) Directorate has used its in-house government expertise in support of PdM MEP to perform approximately 100 power assessments, both inside and outside of the United States, for the Army, Navy and Marines. This work has supported TOCs, COPs, VSPs, combat support hospitals, command, control, communications, computers, intelligence, surveillance and reconnaissance (C4ISR) platforms and technologies and other military tools that require power.

    During this time, CERDEC CP&I has developed a unique set of assessment capabilities and methodologies that not only inform commanders, but help them to design, build and implement optimized tactical power grids.

    “Successful missions require us to consider energy from planning through execution. Power assessments enable commanders to improve operational effectiveness by understanding how to optimize power requirements,” said Edward Plichta, Power Division chief for CERDEC CP&I.

    “Knowing how much energy Soldiers need is important, but we also need to know where the redundancies and unnecessary drains exist. We need to view energy requirements as a commodity and focus more on decreasing demand in addition to the efforts to increase supply,” Plichta said.

    Since 2012, CERDEC CP&I has supported PM MEP forward power assessment teams in rebuilding 31 COPs and 35 VSPs in theater. As a result of CERDEC team efforts with PM Mobile Electric Power, COPs and VSPs are using more energy efficient generator sets, resulting in a 21 percent lower fuel consumption across the fleet. Units are able to log energy/fuel consumption, track maintenance frequency, and note trends.

    Power assessments begin with a detailed data collection process that includes a site survey of all the equipment. CERDEC CP&I works closely with PMs and units to gather requirements—such as power distribution systems, layouts, wiring diagrams and existing and projected equipment and assets—and combines these with manufacturer data to help determine their power profile. This aids in producing solutions with right-sized generator sets and optimized environmental controls, which are particularly important as environmental control units consume 60-70 percent of all energy used at a COP or forward operating base (FOB). Analysts use the assessments to generate a database that can be referenced and adjusted to the solution set or assessment if further optimization is required.

    AutoDise, a planning tool jointly developed by CERDEC CP&I and PM MEP, enables commanders to plan more efficient grids by allowing them to generate virtual before-and-after layouts of COPs, VSPs and FOBs. The user enters relevant data—such as the number of tents, servers and anything that uses power—and the software projects the overall power and fuel consumption per hour.

    “It can also determine power distribution configurations, the cables that would be required for wiring and whether units are utilizing the existing generator set properly,” Pleta said. “We’re training instructors at Fort Lee [Virginia] so they can teach Soldiers and generator mechanics on how to use this unique capability in theater. Meanwhile, we’re beta testing version 7.0 now and hope to release the upgrades next year.”

    CERDEC CP&I engineers then generate and implement an optimized solution set that includes the AutoDise layouts, equipment lists and fielding plans—all of which can be adjusted as needed. Everything from before-after configurations to the types of equipment on site is documented and rolled up into a report that is given to the unit, providing the commander a full record of system layouts should he choose to the duplicate system.

    But a power assessment is more than just a method to estimate the power consumption of tactical operations centers, platforms and systems; it’s a capability that uniquely positions the R&D community to help the Soldier, Pleta said.

    “Power assessments allow engineers first-hand experience to see how equipment is used in the field versus how folks in the lab think it is going to be used. They also provide a more accurate load profile that helps in projecting fuel savings and other theoretical calculations. We feed this documentation back into the R&D process so we can chronicle efficiencies, gauge fuel savings and determine the size or type of grid needed,” Pleta said.

    Power assessments – which include a detailed layout of the area, the state of current power sources and power consumption rates, allow teams to tailor optimized power grid plans, design new distribution systems, and replace legacy systems with more efficient equipment.

    Since 2012, CERDEC CP&I has supported PM MEP forward power assessment teams in rebuilding 31 COPs and 35 VSPs in theater. As a result of CERDEC team efforts with PM MEP, COPs and VSPs are using more energy efficient generator sets, which has reduced fuel consumption across the fleet by 21 percent . Units are able to log energy and fuel consumption, track maintenance frequency and note trends.

    “The smaller bases in theater sometimes have poorly managed power sources and improper or unsafe electrical distribution. The equipment modifications resulting from CERDEC-supported assessments have led to significant savings in acquisition and operational savings during this period. In one example, a COP that was totally dependent on aerial resupply saved 93 gallons of fuel per day. This is equivalent to 42 air drops of 800 gallons each. CERDEC personnel were critical to the successful completion of this PM MEP effort,” said Christopher Bolton, chief for PM MEP’s Technical Management Division.

    CERDEC CP&I will continue this critical support and provide immediate in-theater solutions as well as continued PM support in this area.

    CP&I engineers have also extended power assessments to the Soldier in order to collect information regarding the actual individual and squad requirements during a mission. Using these data points as a performance baseline, CP&I engineers will identify redundancies and areas where consumption can be reduced.

    “We’re uniquely qualified to examine the suite of C4ISR devices that the Soldier requires, and we see a gap where we can provide value added by conducting power assessment to validate those requirements,” said Jonathan Novoa, power management thrust lead for the CERDEC CP&I Power Sources branch.

    As with the small base power grids, the Soldier power assessments will be used to develop novel solutions to lessen the overall Soldiers burden.

    “We’re looking for ways to manage and decrease the power draw of that equipment through intelligent load management and enhanced situational awareness. We want to enable our Soldiers to make energy-informed decisions on the battlefield so they can manage the availability and consumption of energy on their person just like they currently do with food and ammunition,” Novoa said.

    (Tara Clements contributed to this article)

    Read more »
  • Large scale radio technology demonstration at the Army’s Electronic Proving Ground

    Testers from the Electronic Proving Ground (EPG) move out for a day of demonstrating the wideband networking waveform part of the MNVR system. The test involved more than 80 radio nodes throughout Fort Huachuca and the surrounding area. EPG is the Army's designated test center for command, control, communications, computers, cyber and intelligence, surveillance, reconnaissance systems, which includes radio systems. (U.S. Army photos)

    By Ray K. Ragan


    FORT HUACHUCA, Ariz. (Jan. 30, 2014) – The Army’s Electronic Proving Ground (EPG) recently conducted a large scale technology demonstration of a new radio waveform here.

    “We wanted to conduct a full scale, by that I mean an Army brigade’s worth, [demonstration] of radios exercising [and] characterizing the performance of the wideband networking waveform,” said, Joe Sweeney, test engineer for the Army’s Product Manager, Mid-Tier Networking Vehicular Radios (PdM MNVR).

    “We [EPG] have a clear [radio] spectrum, so we provide a real fidelity in testing; there are no other [radio spectrum] factors that can negatively influence our testing.”

    MNVR is a radio system that provides a robust, large-scale networking capability within a large unit, like an Army brigade, from the Soldier to the senior leaders. During the demonstration, a new radio waveform was shown capable of both data capacity and the ability to handle many network users. The demonstration showed the waveform was able to communicate between a smaller unit, like a company, and a much larger unit, like a brigade.

    “This amounted to 88 radios in ground platforms and one radio in a UH60 Blackhawk helicopter,” explained Sweeney.

    Testers from EPG roll down a road near Fort Huachuca, as they demonstrate the wideband networking waveform part of the MNVR system.

    To support a demonstration of this scale, EPG was selected because it offers 1.6 million acres of testing space through the Buffalo Electronic Test Range and its accessibility to radio spectrum. EPG is a favorite among testers in defense and commercial industry because of its access to radio spectrum in a very quiet radio spectrum environment.

    “We needed an area with the ability to deploy vehicle assets in a large representative geographic area with a lot of allowable bandwidth. We also needed a site with established test capabilities—by that I mean testing networking capabilities,” said Sweeney. “EPG provided all of that.”

    EPG, celebrating its 60th anniversary this year, is the developmental testing ground for the Army’s communication and network technology. Among test management, planning and reporting, EPG offers other rarer test requirements like radio spectrum and a varied geography, including mountains, valleys and plains.

    “We [EPG] have a clear [radio] spectrum, so we provide a real fidelity in testing; there are no other [radio spectrum] factors that can negatively influence our testing,” explained Mark Butler, the test officer at EPG for the demonstration.

    Civilians at EPG monitor a demonstration of the wideband networking waveform, part of the MNVR system.

    “Once you have a clean spectrum, you can add things [interference] to it, or degrade it, but you can’t take a noisy spectrum and clean it up, so that makes EPG unique in that aspect.”

    According to Butler, EPG worked with PdM MNVR on other projects and tested for PdM MNVR as early as 2005. This creates the advantage of understanding the program and any unique requirements that a PM may have.

    “I’m in a fortunate position, because the PdM [MNVR] brings me into their integrated product team meetings, and EPG was part of the planning staff from concept initiation,” said Butler.

    We looked at the requirements between the different PMs [PdMs]. We came up with some of the things we thought the PMs wanted to see, figured how we could put that into a relevant environment to see how it [the waveform] works.”

    Civilians from the EPG demonstrate the wideband networking waveform, part of the MNVR system.

    To date, this demonstration was one of the largest that EPG conducted at Fort Huachuca. In addition to 89 ground and air-based radios, the demonstration also used 104 channels of the wideband networking waveform to show that the waveform was capable of handling a large unit communicating.

    “It [demonstration] was a semi-realistic scenario,” said Butler, “we actually came up with a scheme of maneuver that made sense, from staging areas, moving out, your recon people going out, we had all the movements in place to what you’d expect across the range.”

    According to Sweeney, EPG demonstrating the waveform was an important enabler for advancing the radio program.

    “This was a real teaming effort with a lot of cooperation from the Army ground and aviation community,” he added.

    Read more »
  • Army improves network build for NIEs, gives Soldiers the power of change

    A Soldier from the 2nd Brigade Combat Team, 1st Armored Division operates Warfighter Information Network-Tactical (WIN-T) equipment during the Army's Network Integration Evaluation (NIE) 14.1 at Fort Bliss, Texas, in November 2013. For the upcoming NIE 14.2, the Army has introduced a more efficient process to create the data products that enable communications across the tactical network -- setting the stage to simplify network start-up procedures for users and give operational units more control over their networks. (U.S. Army photo by Amy Walker, PEO C3T)

    By Claire Heininger


    ABERDEEN PROVING GROUND, Md. – The Army is introducing a more efficient process to produce the digital “glue” that ties together the network architecture for the Network Integration Evaluations (NIEs).

    The new method is not only faster, but also provides greater flexibility as the Army adds industry systems to the network baseline for evaluation and incorporates capability improvements for each NIE event. By automating key parts of the process used to create the data products that enable communications across the tactical network, the Army is also setting the stage to simplify network start-up procedures for users and give operational units more control over their networks.

    “We shaved off several weeks of production time while delivering a better result to support the NIE,” said Randy Young, the Army’s project director for Tactical Network Initialization (PD TNI), assigned to the Program Executive Office for Command, Control and Communications-Tactical (PEO C3T). “And it’s only a first step – what we’re doing for NIE will also be a proof of concept informing improvements to how Data Products are delivered and used across the force.”

    Data products are a collection of mission data required to initialize the Army’s network, enabling the flow of digital information between different communications systems. PD TNI builds a unique Data Product for each Army unit, taking into account its specific mission, personnel footprint and mix of networked mission command systems.

    Building data products for the NIE, however, poses a more complex undertaking than building them for a typical unit. While the Army’s usual 12-week production process was designed to deliver a complete, “set in stone” product – when the interoperability of a deploying unit’s network hinges on it, there is no margin for error – the NIE architecture is, by its nature, always changing. Systems are added to or subtracted from the evaluation list for a particular NIE. Vendors unfamiliar with Army network protocols need time to adapt their systems to Army standards.

    “Ultimately, we want to give users more power to build, maintain and adapt their tactical networks”

    “The NIE requires a lot of flexibility because it’s an experiment, and also has systems from outside the Army connecting to the network,” Young said. “The network evolves over time as we get closer to each event.”

    But the need for accuracy doesn’t go away – it is amplified, given that the NIE provides operational test data for programs of record, validates the Army’s network baseline for fielding and collects Soldier feedback on promising industry capabilities.

    “If the data product is broken, there will be major issues at the actual event,” Young said.

    For previous NIEs, the PD TNI team took the Army’s network systems architecture or “horseblanket” in NIE parlance, and manually translated it into the data products production environment by essentially re-creating a graphical depiction of the brigade network. Engineers spent weeks on quality assurance measures to ensure they accurately transferred the horseblanket and captured ensuing changes.

    The new process, launched for the upcoming NIE 14.2, eliminates the need for recreating the horseblanket by automatically translating the horseblanket data into the production database. Once the initial legwork is complete, changes are detected automatically and can be pinpointed and implemented more efficiently. After the systems are aligned, the tool then automatically generates the address attributes and assigns them the internet protocol (IP) addresses required to actually communicate over the network.

    Together, these changes allow PD TNI to produce accurate data products for an NIE in less than 12 weeks and better accommodate the need for flexibility.

    “It allows us to start the build later, and for future NIEs we’re aiming to get even faster,” Young said.

    The production techniques pioneered for the NIE will inform the Army’s processes used for fielding data products more broadly. The NIE is also serving as a test bed for new capabilities that give units the ability to adjust their network architectures due to operational changes. In the past, requests to change data products would be sent back to PD TNI, and the unit would wait weeks or months for a new set to be sent back to the field.

    With the warfighter initialization tool (WIT) as part of their initialization tool suite, units can make updates to data products much faster at the brigade level, improving situational awareness and better enabling the unit to meet its mission. After successful evaluation at several NIEs, the WIT began fielding to operational units in 2013. At NIE 14.2, the Army will build on that progress by demonstrating the ability for a battalion’s worth of upper tactical internet mission command applications to “self-initialize,” or automatically re-create the information that allows them to connect to the network.

    These improvements are considered interim steps to a long-term data products solution that will enable full “dynamic initialization of command and control applications,” Young said.

    “Ultimately, we want to give users more power to build, maintain and adapt their tactical networks,” he said. “Through the process and capability enhancements shown through NIE, we are absolutely on the right path.”

    Read more »
  • Army fuel reformation looks to increase efficiency, save lives

    RDECOM CERDEC hosts defense partners for a demo of the Solid Oxide Fuel Cell 10 kW power unit. It exhibits high efficiency, a low acoustic signature, a low visible signature, and weighs less than the Army’s current 10 kW Tactical Quiet Generator Set. (U.S. Army CERDEC Photo/ Allison Barrow)

    By Allison Barrow and Joyce Brayboy


    ABERDEEN PROVING GROUND, Md. – Fuel is the second largest transported item in the field next to water. As a result, fuel truck convoys that deliver fuel are vulnerable to enemy attacks, which have resulted in loss of money, time and lives.

    To combat this problem, scientists and engineers from the U.S. Army Research, Development and Engineering Command are working to lessen the reliance on fuel truck convoys by reducing the amount of military fuel, called jet propellant 8, or JP-8, the Army needs in theater and improving the efficiency of its use.

    One way they are doing this is through reforming JP-8 so that it can be used in efficient portable energy systems, like fuel cells and other novel power sources, which primarily operate on hydrogen or other cleaner fuels.

    “The goal is to take the logistic fuel that’s already all over the battlefield, that’s there and available to the Soldiers, and convert it to something that can be used in smaller and renewable systems,” said Steve Slane, RDECOM’s communications-electronics center, or CERDEC, Command, Power and Integration (CP&I) Directorate, Power Generation and Alternative Energy Branch chief.

    Engineers and scientists from CERDEC, along with RDECOM’s Army Research Laboratory and Tank Automotive Research, Development and Engineering Center are working to reform JP-8 and integrate it into systems so it can be converted seamlessly and locally.

    “Fuel reforming is one of those leap-ahead technologies that could allow JP-8 to be transformed into valuable fuels that can be used and generated on the battlefield forward. So instead of shipping propane and methanol and kerosene and gasoline, why not reform JP-8 locally to power those systems?” said Slane.

    The process of reforming fuel entails high-temperature catalytic reactions that covert a liquid fuel, in this case JP-8, into a lighter, gaseous fuel.

    Dr. Dat Tran, U.S. Army Research Laboratory electro-chemistry, is focused on extracting sulfur from JP8, or Jet Propellant 8, a fuel widely used in the Army. (U.S. Army ARL Photo/Joyce P. Brayboy)

    This comes with two main challenges because of the sulfur contained in JP-8 and its complex composition, said Dr. Terry DuBois, subject matter expert in fuel reforming and combustion in CERDEC CP&I’s Power Division.

    First, sulfur can deactivate catalysts, which means it can limit the life or poison catalysts during the reforming process and make it inoperable. Second, sulfur can accelerate carbon formation, where solid carbon particles form in the reactor, clog the flow of the reactor or deactivate catalysts and cause it to fail, said DuBois.
    “Those are two big challenges for us in reforming; how do we transform JP-8 to a hydrogen-rich stream and deal with the two mechanisms for killing the reactor?” said DuBois.

    This fuel transformation effort is a main focus for CERDEC, TARDEC and ARL.

    The challenge is developing a practical fuel reformation process for better energy conversion that would have to be portable, quick and easy to use, said Dr. Zachary Dunbar, an ARL fuel cell team member.

    Dr. Dat Tran, ARL fuel cell team lead, has tested at least 300 different combinations of materials during the last four years while he has been investigating fuel reforming with the team, he said.

    “JP-8 is a complicated and dirty fuel. The sulfur is a huge problem because it can hurt the fuel cells,” Tran said. “Sulfur has many different compounds that behave differently. The compounds in sulfur make it hard to find an agreeable material.”

    While ARL conducts the basic research of fuel reforming, CERDEC integrates the basic research into a system and evaluates it, while also performing further research and development of fuel reforming materials.

    The Reformer Test Bed is used for catalyst and process condition evaluation of fuel reformers. (U.S. Army CERDEC Photo)

    “Both of the efforts that we have ongoing are focused on addressing desulfurization of JP-8, and ARL is pursuing complimentary R&D on unique materials for sulfur absorption. In addition, ARL is looking at membranes that can selectively separate hydrogen from the gaseous reformed fuel stream so that you have a pure hydrogen stream,” said DuBois.

    “CERDEC’s in-house program is looking at catalytic materials. So we have ongoing research work evaluating different catalytic materials and how well they stand up to chemical compounds found in JP-8. We are also evaluating sulfur absorbent materials and processes on a long-term basis,” said DuBois.

    TARDEC also works in fuel reforming by integrating it into fuel cell power systems.

    “The main applications are combat and tactical vehicle Auxiliary Power Units, silent propulsion for unmanned ground systems and extending the silent range of electric vehicles for scout or reconnaissance missions,” said Kevin Centeck, TARDEC Nonprimary Power Systems team lead.

    “TARDEC is also investigating the requirements for a fuel reformation system to be integrated with a commercial automotive fuel cell stack, which could help reduce cost and increase reliability of fuel cell power systems,” said Centeck.

    CERDEC, ARL and TARDEC collaborate on their fuel reforming efforts for the Army through fuel cell test and integration working groups with other Defense Department partners through quarterly program and design reviews.

    CERDEC is taking fuel reforming one step further by working to integrate its efforts into its Energy Informed Operations, or EIO, initiative, which aims to make power systems “smart” by enabling “smarter” monitoring on the systems as well as integrating them into a smart tactical microgrid.

    This smart technology will enable and inform Soldiers with data such as, “How much fuel do I have left? When are the fuel trucks coming next? What’s my energy status?” said Slane.

    “The efficiencies gained by using grid data to control power and inform operations will increase availability and reliability of power while reducing the burden of fuel logistics, storage and cost,” said Slane. “CERDEC CP&I is uniquely qualified to cover all this because we have our mechanical engineers who are working fuel reformation and combustion but we also have engineers within the mission command community here working on intelligent micro-grids through EIO.”

    RDECOM will continue to work to address the challenges with fuel reforming and integrate it into a full power system that can then be transitioned to the field.

    “Reducing the amount of fuel is really a goal of what this organization is about,” said Slane. “Fuel reforming is one of the key technology areas that will enable us to reduce fuel on the battlefield, reduce the amount of truck convoys, the amount of storage needed and the cost of operating in austere environments.”

    Read more »
  • Reuseable Metrics

    Standardized Measures of Performance Framework enables consistent assessment of Army network capability


    By Mr. Michael Badger, Dr. Dennis Bushmitch, Mr. Rick Cozby and Mr. Brian Hobson

    “The testing of complex networks and their capabilities can be time- and resource-intensive, with minimal potential to reuse the test event’s capability.”

    The Army’s adoption of the Agile Process to enable rapid technology insertion led the three agencies charged to execute this process—the U.S. Army Test and Evaluation Command (ATEC), the U.S. Army Training and Doctrine Command (TRADOC) Brigade Modernization Command (BMC) and the Assistant Secretary of the Army for Acquisition, Logistics and Technology (ASA(ALT))—to organize as the TRIAD and develop the needed measurement framework.

    The TRIAD intended that the measurement framework would establish consistent, reusable, traceable, standardized performance and effectiveness metrics across the Agile Process. More specifically, the TRIAD envisioned that this framework would preserve resources and reduce risk in planning and executing the culminating activity of the Agile Process, a Network Integration Evaluation (NIE).

    The testing of complex networks and their capabilities can be time- and resource-intensive, with minimal potential to reuse the test event’s capability. Testing without well-defined analytic objectives and repeatable measures of performance (MoPs) can waste time and money. Furthermore, without an Armywide objective standard for test and evaluation (T&E) metrics, the results will be less than compelling for senior decision-makers. Different organizations supporting the Agile Process and NIE events often misinterpret, inappropriately apply or reinvent the current set of network-related MoPs for each application (e.g., a T&E event).

    The complex system-of-systems (SoS) solutions that comprise the Army’s network demand a measurement framework with traceable and credible measures, encompassing the interaction among various network layers; command, control, communications, computers, intelligence, surveillance and reconnaissance (C4ISR) systems; and the technical requirements that underpin them. Beginning with the FY12 NIE events, an enduring MoP Framework emerged as a potential solution standard, developed by ASA(ALT), ATEC, BMC, the federally funded research and development center MITRE Corp., and subject-matter experts (SMEs) from the Program Executive Office Command, Control and Communications – Tactical (PEO C3T).

    The MoP Framework, which the TRIAD has used successfully and has matured during the planning and/or execution of five NIEs, achieves the following:

    • Standardizes the terms of reference for each individual MoP and its application.
    • Defines instrumentation considerations and practices in support of MoPs.
    • Enables organizations using the MoPs to establish traceability to credible source documentation (operational and analytic requirements).
    • Allows organizations to determine the gap(s) in MoP availability, application maturity and definition in a visual manner through the use of graphics.
    • Allows organizations to re-prioritize the MoPs within each graphical representation according to analytic engineering or T&E requirements.
    • Allows simple, graphical communication of T&E and analytic requirements among organizations from an operational perspective and at multiple levels (system, SoS, mission command tasks and operational effectiveness).
    • Standardizes the units of measurement.
    • Mitigates the errors in interpretation, instrumentation, and data collection, reduction and analysis approaches.

    FIGURE 1: FRAME OF REFERENCE This is a graphic representation of a map for an operational capability category and subcategory. The graphic also illustrates the inclusion and alignment of various reference attributes, such as layers, information exchange requirement (IER), data types and source MoPs. SMEs and organizations create and tailor different MoP maps for different operational capability subcategories, systems and/or SoSs within a subcategory. (See definitions in Figure 2) (SOURCE: Dr. Dennis Bushmitch, ASA(ALT) System of Systems Engineering and Integration Directorate (SoSE&I))

    The key new concept introduced in the enduring MoP Framework is called a MoP map.

    Figure 1 represents such a map for an operational capability category and subcategory. (See definitions in Figure 2) Figure 1 also illustrates the inclusion and alignment of various reference attributes, such as layers, data types and source MoPs. SMEs and organizations create and tailor different MoP maps for different operational capability subcategories, systems and/or SoSs within a subcategory.

    The vertical axis of the MoP map relates top-level mission effectiveness MoPs to lower-level waveform, spectrum and radio frequency (RF) MoPs. The horizontal axis relates operational mission threads, applications, information exchanges and data types within a given system or SoS operational capability category. The attributes along this horizontal axis allow for MoP alignment to a variety of mission threads (i.e., call for fire); applications and information exchanges (i.e., message type); and data types (i.e., voice and video).

    FIGURE 2: LAYERS OF CAPABILITY The MoP Framework employs several reference attributes to support the standardization and traceability of requirements. These reference attributes correlate to credible operational capability categories and subcategories, align to layers of user application, are traceable to data types, and feature a source reference set of credible and established metrics. This graphic also depicts a unique numbering schema for each subcategory to preserve originality and allow for traceability. (SOURCE: Mr. Brian Hobson, ASA(ALT) SoSE&I)

    The MoP Framework employs several reference attributes to support the standardization and traceability of requirements. These attributes, as Figure 2 shows, correlate to credible operational capability categories and subcategories, align to layers of user application, are traceable to data types, and feature a source reference set of credible and established metrics. The MoP map accomplishes the following functionality:

    • Aligns MoPs to operational capability categories and subcategories, enabling credible application to operational systems.
    • Maps MoPs to user application layers, allowing flexibility.
    • Enables traceability of MoPs to application data types, enabling their reusability and completeness across operational capabilities.
    • Aligns credible, applicable and reusable metrics, increasing efficiency across a user community from multiple organizations
      • Establishes relationships among different MoP maps by cross-referencing graphical tools
      • Provides a powerful graphical representation tool for traceability to the parent operational requirement and MoP
      • Provides a simple reference scheme for easy identification and traceability of MoP types, the MoP system layer and the operational capability type.
    • Establishes and standardizes definitions and units of measurement.

    The MoP Framework developers identified, developed and defined a set of operational capability areas that encompass the potential system—Capability Set (CS), System Under Test, System Under Evaluation and network capabilities envisioned as part of the Agile Process. Figure 2 defines these operational capability areas and categorization, and depicts a unique numbering schema for each subcategory to preserve originality and allow for traceability.

    The intent of these defined operational capability categories is to align operational gaps with projected needs and requirements into operational capability categories, and to establish, define and employ consistent, credible and reusable metrics. These metrics, in turn, inform and characterize the performance and effectiveness of operational capability to satisfy defined requirements. Because these metrics have different attributes that they must align to and support, the MoP maps were developed with three different attribute alignment considerations: network layers, data types and MoP sources, as follows:

    Network layers—Layering is an accepted approach to focusing and constraining the complexity in technical network analysis. The complete set of MoP Framework layers include: mission effectiveness; mission threads; application; Common Operating Environment (COE)/security; network routing/quality of service; network transport; waveform; and spectrum/RF. The vertical axis of “layering” in the MoP Framework in Figure 1 has evolved and matured through application to include high-fidelity measurement needs at the bottom of the axis (i.e., spectrum, RF and waveform), transitioning to lower-fidelity measurement needs at the top of the axis (i.e., mission effectiveness and mission threads).

    FIGURE 3: MOP HEIRARCHY In developing the MoP Framework and the individual MoP maps, the analytic community, led by TRADOC, developed a hierarchy to categorize essential elements of analysis (EEAs) against operational issues for analysis planning. The operational capability and systems categories and the MoPs defined in this standardized framework are aligned against this hierarchy. MoPs maintain mapping to this hierarchy to facilitate relevant and credible analysis planning. (SOURCE: Chris Morey, TRADOC Analysis Center)

    Data types—As depicted in the generic MoP Framework, several data types within each operational capability subcategory could apply to different MoPs. The horizontal axis in Figure 1 relates the various operational mission threads, applications, information exchanges and data types toward one another within a given system or SoS category. The traceability of MoPs within data types between different operational capability subcategories allows analysts to cross-reference MoP maps.

    Measures of performance sources—In developing the MoP Framework and the individual MoP maps, the TRIAD leveraged a body of work led by the TRADOC Analysis Center to identify a framework for Agile Process analytic requirements. (See Figure 3.) This analytic framework established a hierarchy of operational issues and essential elements of analysis, allowing for a credible and traceable source of MoPs.

    Figure 4 shows the application of the MoP Framework methodology to the Mission Command (MC) Display Hardware operational capability subcategory.

    FIGURE 4: FRAMEWORK This graphic illustrates the application of the MoP Framework methodology to the MC Display Hardware operational capability subcategory, moving hierarchically through mission threads, IERs and data types. (SOURCE: MR. Brian Hobson, ASA(ALT) SoSE&I)

    As depicted in Figure 5, the performance MoPs are predominantly in the area of SoS operational issues. Figure 5 also depicts the evolving and maturing capability of the MoP Framework maps, as the MoPs for the COE/security layer have yet to be developed and coordinated.

    Each MoP has a unique number. This numbering schema allows analysts and evaluators to leverage the MoP Framework for MC Display Hardware and import the information to event- or system-specific data source matrices, while still maintaining the traceability and origin of these MoPs.

    FIGURE 5: PERFORMANCE MOPS Performance MoPs are predominantly in the area of SoS operational issues. Each MoP has a unique number. This numbering schema allows analysts and evaluators to leverage the MoP Framework for MC Display Hardware and import the information to event- or system-specific data source matrices, while still maintaining the traceability and origin of these MoPs. (SOURCE: Mr. Brian Hobson, ASA(ALT) SoSE&I)

    By identifying and aligning MoPs for each operational capability subcategory, the MoP Framework provides credible and traceable metrics for analysts that are reusable across Agile Process activities and between organizations in support of a particular application (i.e., event). This reusability is based on repeated application of operational capability and the repeated need to measure operational performance and utility.

    SUPPORTING THE AGILE PROCESS An NIE is the culminating activity of the Agile Process. Here, SPC Rockne Foster, right, a multichannel transmission systems operator-maintainer assigned to 1st Battalion, 77th Armored Regiment, 4th Brigade Combat Team (BCT), 1st Armored Division, inspects the outside of a billeting shelter of the expeditionary combat outpost (ExCOP) May 20 before disassembling it. Soldiers spent three weeks evaluating the durability and energy efficiencies of the ExCOP at White Sands Missile Range, N.M., during NIE 13.2. (Photo by Sgt. Janelle Dean, 16th Mobile Public Affairs Detachment)

    The standardization of a MoP Framework Armywide will promote cost avoidance by reducing the re-creation of testing objectives and streamlining instrumentation planning. The implementation of a unified MoP Framework will also give greater validity to the operational relevance of testing. Analytic requirements exchanged between organizations using this standardized construct provide for clear cost-evaluation guidelines, prioritization and traceable evaluation.

    For more information, please contact Dr. Dennis Bushmitch (dennis.bushmitch.civ@mail.mil, 410-322-2054) or Mr. Brian Hobson (bhobson@trideum.com, 913-544-5101).

    MR. MICHAEL BADGER is a senior network engineer for PEO C3T. He holds a B.S. in mechanical engineering from the Rutgers College of Engineering and an MBA from Monmouth University. He was a resident senior executive fellow of the Harvard Kennedy School of Government in 2010. Badger is Level III certified in systems planning, research, development and engineering (SPRDE) – systems engineering and is a member of the U.S. Army Acquisition Corps (AAC).

    DR. DENNIS BUSHMITCH is an inventor and prolific technical author, and has been a chief analyst for several Army programs. He holds an M.S. and Ph.D. in electrical engineering from the Polytechnic Institute of the New York University. He is Level III certified in SPRDE – systems engineering and is a member of the AAC.

    MR. RICHARD “RICK” COZBY is the deputy director for SoS engineering and integration within the Office of the ASA(ALT). He holds a B.E. in electrical engineering from Vanderbilt University, an M.S. in administration from Central Michigan University, and an M.A. in management and leadership from Webster University. He is Level III certified in program management and in test and evaluation, and is a member of the AAC.

    MR. BRIAN HOBSON is a senior analyst, senior program manager and deputy director for Trideum Corp., Huntsville, Ala.. He holds a B.S. from the United States Military Academy at West Point and an M.S. in operations research from the Air Force Institute of Technology. He is a lifetime member of the International Test and Evaluation Association and the Military Operations Research Society.

    Contributing to this article were Mr. Vince Baxivanos, Ms. Christina L. Bouwens, Dr. Melanie Bragg, Dr. Nancy M. Bucher, Ms. Karen Drude, Ms. Diane Eberly, Mr. Derek Erdley, Mr. Na Gaither, Mr. Omar Gutierrez, Dr. John Harwig, Mr. Anthony W. Harriman, Mr. Michael S. Jessee and Dr. Chris Morey.



    Read more »
  • Direct fire munition increases lethality, reduces collateral damage

    The backpack-size drone can be deployed within a two-minute time frame and is destroyed upon hitting its target. (CCWS courtesy photos)

    By The Close Combat Weapon Systems Project Office


    REDSTONE ARSENAL, Ala. — Engaging the enemy effectively without a clear line-of-sight is an ongoing challenge for Soldiers serving in small, outlying posts in theater. One solution is the Lethal Miniature Aerial Munition System (LMAMS), a not-within-direct-fire-line-of-sight, single-use munition system that is launched from a small tube. The entire system is carried in a Soldier’s backpack.

    Equipped with optical sensors, LMAMS transmits live color video wirelessly to a display on a ground control unit. The technology allows the Soldier to find the enemy and ensure positive identification before engaging. LMAMS deploys within two-minutes and can fly for up to fifteen minutes.
    The advantages? Increased support and lethality while limiting unintended damage.

    “It is a very sophisticated bullet with eyes,” said Bill Nichols, acting product director for LMAMS at the Army’s Close Combat Weapons Systems (CCWS) project office.

    Fulfilling a Requirement
    LMAMS is the product of an Army requirement submitted to the U.S. Army Rapid Equipping Force (REF) in January 2011. The request for an improved aerial munitions system was based on the results of a limited Block 1 Switchblade assessment, completed in the fall of 2010. Switchblade was the most mature technical solution available at the time. LMAMS, the resulting upgraded capability, includes an enhanced day camera and the addition of an infrared camera for night operations. It also comes with a tailored training package.

    “… With all the limitations on resources, this team has performed a superb job in their ability to produce the kind of efficiencies that made it possible to get this system into theater rapidly.”

    “Once the development work was completed, we took that configuration and put it through an extensive production verification test to ensure reliability of the system and to basically ‘shake out’ the system,” Nichols said.

    That shaking out of the system included more than 100 test flights for the LMAMS. Once the test flights were completed, full-system munitions were produced and vetted through safety confirmation tests. The tests included limited environmental testing, electromagnetic interference testing and full, live firefight flight tests. Once LMAMS was deemed safe for use by Soldiers, the Army started equipping the system to support operations in Afghanistan during Operation Enduring Freedom in August 2012.
    “By partnering with the REF, we were able to deliver the capability to Soldiers in combat within14 months of receiving the original requirement” said Nichols.

    Bill Ruta, program manager for CCWS added, “This has been a shoestring operation. With all the limitations on resources, this team has performed a superb job in their ability to produce the kind of efficiencies that made it possible to get this system into theater rapidly.”

    LMAMS is launched from a small tube and viewed from the ground control unit.

    Unique Capability
    Although the aerial munition is designed for non-line-of-sight targets, it’s categorized as a direct fire asset. When the munition reaches the target, the cameras on LMAMS allow the Soldier to have “eyes on” the target, which provides the required positive identification. If the situation or target changes, then the operator can wave the munition off and either continue to view or re-approach the target or look for a secondary target.

    “It is one of the few—if not the only—munition that can be moved off of its intended target, directed to a safe place, and detonated or destroyed after it is launched. There is no other munition in the inventory that I am aware of that allows us to do this in real time and with such precision. It limits unintended casualties and collateral damage,” Nichols said.

    LMAMS has allowed Soldiers to engage the enemy in the open, in narrow village corridors, or where other civilians are present within a small radius of where the target is to be engaged or neutralized. In instances where the primary target has been lost, the Soldier has been able to divert the munition to a secondary target or detonate, preventing civilian casualties.

    Flight Path
    LMAMS is ground-launched from a static position at a forward operating base or at a small post in a ready-to-fire or standby mode. In the future, it may be possible to have several munitions fired from a pod in an effort to provide base defense or to have the system launched from a vehicle.

    “I’d say that with this type of munition and capability, although we have learned a lot, we are at about the second day of the Wright brothers’ first flight. We’ve got that much left to learn with this once we put it into the hands of the great Soldiers we have,” Nichols said.

    Feedback from Soldiers who’ve used the munition is critical in determining the future of LMAMS, and there are systems in place to ensure that CCWS can collect crucial data. CCWS is already looking at feedback from each engagement and identifying potential improvements. There are also two formal field operating assessments going on as part of the feedback processes. These assessments, along with the individual engagement feedback process, will provide CCWS information critical to determine any future material changes, methods of employment and more effective system training.

    “We’re getting all of that great feedback because Soldiers are always brutally honest,” Nichols said. “That’s exactly what we need in order to continue to evolve LMAMS.”

    Read more »