• Army prepares for next Network Integration Evaluation

    Soldiers from 2nd Brigade, 1st Armored Division train on Warfighter Information Network-Tactical (WIN-T) Increment 2 in February. The main focus for NIE 13.2 is the Follow-on Test and Evaluation (FOT&E) for WIN-T Increment 2, which is the Army's mobile network backbone. (Photos by Claire Heininger, U.S. Army)

    Claire Heininger, U.S. Army

     

    FORT BLISS, TEXAS — With two units now readying for Afghanistan with the Army’s new tactical communications network, the service will continue to drive technology forward through its next Network Integration Evaluation this spring.

    Soldier training, vehicle integration, system check-outs and other preparations are well underway in advance of NIE 13.2, which begins in May at Fort Bliss and White Sands Missile Range, N.M. It is the fifth in the series of semi-annual field evaluations designed to keep pace with rapid advances in communications technologies and deliver proven and integrated network capabilities to Soldiers.

    The NIEs are not stand-alone events, but build on previous exercises by improving the Army’s integrated network baseline and incorporating Soldier feedback into system functionality and training methods. As the Army continues to field network capability sets with systems and doctrine vetted through the NIE, the events will further evolve to include joint and coalition involvement next year.

    “The NIE offers us the ability to evaluate and improve the network incrementally,” said Maj. Gen. Harold Greene, the Deputy for Acquisition and Systems Management, Assistant Secretary of the Army for Acquisition, Logistics and Technology, known as ASA(ALT). “It forces the community together in an environment where Soldiers are telling us what we did well and what we didn’t do well — very graphically, very visually, very obviously.”

    From combined arms maneuver across more than 150 miles of desert to subterranean operations in mountain caves, NIE 13.2 includes mission threads designed to measure network performance at all echelons, from the brigade commander down to the dismounted Soldier. It will include an aerial tier to extend the range of communications and operational energy solutions to more efficiently power networked equipment.

    “We’ve got some good questions, and the scenario will allow us to get at a lot of those operational pieces,” said Col. Elizabeth Bierden, chief of the Network Integration Division, Brigade Modernization Command, or BMC. “We’ve seen many of the systems before, but I think we just get the network better every single time.”

    An engineer works on a Bradley Fighting Vehicle equipped with network gear in preparation for the Network Integration Evaluation (NIE) 13.2. From combined arms maneuver across more than 150 miles of desert to subterranean operations in mountain caves, NIE 13.2 includes mission threads designed to measure network performance at all echelons, from the brigade commander down to the dismounted Soldier.

    The main focus for NIE 13.2 is the Follow-on Test and Evaluation (FOT&E) for Warfighter Information Network-Tactical (WIN-T) Increment 2, the Army’s mobile network backbone. WIN-T Increment 2 provides an enhanced capability over the current Increment 1 version used today in Afghanistan, including unprecedented “on-the-move” communications capabilities down to the company level. A successful test will enable the Army to keep fielding WIN-T Increment 2 to operational units beyond Capability Set 13, which is now being delivered to select brigade combat teams (BCTs) preparing for deployment.

    During the FOT&E, the 2nd Brigade, 1st Armored Division (2/1 AD) will conduct the full range of military operations — from movement to contact to peacekeeping — and stretch the WIN-T network over even greater distances than during NIE 12.2, which was the unit’s first formal chance to assess the system. Following that evaluation in May 2012, the Army aggressively pursued and implemented corrective actions to address the areas identified for improvement, and 2/1 AD Soldiers have also become more comfortable and proficient with the equipment.

    “The training is more hands-on, and with the knowledge we already have we’re able to go more in-depth,” said Spc. Erik Liebhaber, who has participated in three NIEs and said training for 13.2 incorporated specific scenarios that Soldiers had previously encountered in the field. “That’s a big part of the continuity.”

    Other systems under formal test include Joint Battle Command-Platform (JBC-P), the Army’s next-generation situational awareness and blue force tracking technology; Nett Warrior, a smartphone-like system for dismounted leaders; the Area Mine Clearance System-Medium Flail, an armored vehicle designed for clearing large areas of anti-tank and anti-personnel landmines; and Tactical Communication and Protection System, designed to prevent hearing injury while allowing Soldiers to remain cognizant of their environment during combat. A dozen additional systems, such as those comprising the aerial tier, will receive less formal evaluations.

    Both JBC-P and Nett Warrior have actively incorporated user feedback from several previous NIE cycles into their hardware and software designs.

    “It’s gotten a lot simpler to use,” Staff Sgt. Lance Bradford said of JBC-P. “That was our largest suggestion to them — you’ve got to get this more user-friendly.”

    Soldier feedback and lessons-learned from the NIEs not only affect the conduct of future NIE iterations, but have also been applied to the process of producing, fielding and training units on Capability Set (CS) 13, which is the Army’s first such communications package to provide integrated connectivity throughout the BCT. The NIEs informed all aspects of CS 13, from how network systems are installed onto a vehicle, to which training approach is most effective, to which Soldiers within a brigade are issued certain pieces of equipment.

    Two BCTs of the 10th Mountain Division, now in the final stages of training before deploying to Afghanistan later this year, are receiving lessons-learned and recommended operational uses for the equipment that were developed during the NIE process. Serving as Security Forces Advise and Assist Teams (SFAATs), the units will rely on the new network as they work closely with the Afghan forces, take down fixed infrastructure and become increasingly mobile and dispersed in their operations.

    While NIE missions to date have confirmed that CS 13 can support such operations, they have not been limited to the Afghan mission. The NIE 13.2 scenario will set the stage for future exercises that will include new offensive and defensive operations replicating what units may face in other regions, including joint and coalition involvement beginning with NIE 14.2 next spring.

    “We are trying to set the stage for a joint and multinational effort in 14.2, and so we’re looking across functions at Intelligence, Surveillance and Reconnaissance, close air support, air ground-integration, with the major objectives focused on joint entry operations and the joint network,” said Brig. Gen. Randal Dragon, BMC commander. “We’ll be in a position to look at a number of those joint functions and we’ll set the stage through the series of NIEs we have coming up.”
     
     


    Read more »
  • First unit readies for Afghanistan with new network

    Soldiers from the 4th Brigade Combat Team, 10th Mountain Division, train using Capability Set 13, at Fort Polk, La., March 3, 2013. A major focus of CS 13 is equipping dismounted leaders and Soldiers with tools that provide the type of situational awareness and communications capabilities that were previously only available in vehicles or command posts. (Photo by SGT David Edge, C230 IN)

    Claire Heininger, U.S. Army

     

    FORT POLK, La. — When they deploy to Afghanistan this summer to assist in the drawdown of U.S. forces, the Soldiers of the 4th Brigade Combat Team, 10th Mountain Division, will have a new edge.

    The unit will be the first to use an on-the-move communications network that stays connected over vast distances, providing information throughout the brigade down to the lowest echelons. That capability will be critical as U.S. troops work closely with the Afghan forces, take down fixed infrastructure and become increasingly mobile and dispersed in their operations, leaders said.

    “This is much needed in Afghanistan,” said Brig. Gen. Walter E. Piatt, deputy commanding general for support, 10th Mountain Division (Light Infantry). Like their counterparts in the 4th Brigade Combat Team, or BCT, the Division’s 3rd BCT will also be deploying as a Security Forces Advise and Assist Team, or SFAAT, with the new network later this year.

    “Imagine you’re a Soldier and you need information on a given area, or you want to see where units are located to your left and right,” Piatt said. “You don’t want to have to come back to headquarters; you don’t want to have to force a transmission over a radio net just to get that. You want to have that information readily available. (This network) allows us to do that on the move, and allows us to do it dismounted as well.”

    Known as Capability Set 13, or CS 13, the package will allow the 10th Mountain units to utilize advanced satellite-based systems — augmented by data radios, handheld devices and the latest mission command software — to transmit voice/chat communications and situational awareness data throughout the SFAAT. On patrol inside mine-resistant, ambush-protected vehicles configured with components of CS 13, leaders will be able to exchange information and execute mission command using mobile communications technologies, rather than having to remain in a fixed location to access the network.

    A Soldier from the 4th Brigade Combat Team, 10th Mountain Division, trains using Capability Set 13, at Fort Polk, La., Feb. 28, 2013. When they deploy to Afghanistan this summer to assist in the drawdown of U.S. forces, the BCT will be the first to use CS 13, an on-the-move communications network that stays connected over vast distances, providing information throughout the brigade down to the lowest echelons. (Photo by Claire Heininger, U.S. Army)

    The Army targeted the two brigades as the first to receive CS 13 capability because they require advanced communications to carry out their advise-and-assist mission in Operation Enduring Freedom. While the Afghan forces will be taking a lead in operations, the SFAAT units will have the network capabilities to support with situational awareness and needs such as calls for air support, artillery support and other reach-back communications.

    After several months of new equipment training to familiarize Soldiers with CS 13, the 4th BCT is now immersed in intensive final preparations for deployment. The prep includes a several weeks-long Joint Readiness Training Center rotation where they will use the gear in realistic operational scenarios based on the SFAAT mission.

    The 10th Mountain brigades are also receiving lessons-learned and recommended tactics, techniques and procedures, known as TTPs, for using the equipment that were developed during the Army’s Network Integration Evaluation, or NIE, process.

    The semi-annual field exercises involve 3,800 Soldiers of the 2nd Brigade, 1st Armored Division, who use networked equipment as they execute mission threads in the rough terrain of White Sands Missile Range, N.M. The NIEs were used to integrate the CS 13 network and validate its performance prior to fielding. They also produced voluminous Soldier feedback that was incorporated into vehicle designs, handheld device configurations, software features and other elements of the capability set.

    Capt. Joseph Perry, a company commander with 2/1 AD who has participated in several NIEs, said he looks forward to seeing how the SFAAT teams will ultimately use the network in theater.

    “I’m really curious to see what their feedback is,” he said. “I’d like to see the circle complete.”

    The brigades’ deployment with CS 13 will be the culmination of a total Army effort to quickly field the capabilities, spanning dozens of commands and locations and requiring constant coordination among network and vehicle project managers, production facilities, brigade staffs and fielding and training professionals. Along with the sophistication of the equipment, the fielding effort was unique because it marked the first time the Army delivered a complete package of network technologies that was integrated up front, rather than providing each system independently.

    “This is the way the Army needs to conduct business for this type of fielding,” said Lt. Col. Bill Venable, the Army’s system of systems integration “trail boss” assigned to 4/10. “Synchronizing equipment deliveries, vehicle touches, training and other elements makes sense for communications systems that are integrated across the BCT, and helps reduce the burden on the unit operating in a time-constrained environment.”
     
     


    Read more »
  • Long-term strategic planning spurs agile consolidation

    A Soldier from 2nd Brigade Combat Team, 1st Armored Division (2/1 AD) uses a Nett Warrior handheld connected to a Rifleman Radio to pass information during operations at the Army's Network Integration Evaluation (NIE) 13.1 on Nov. 9, 2012. The Rifleman Radio and Nett Warrior are key to connecting dismounted leaders into the tactical communications network through voice and data. (Photo credit: Claire Heininger, U.S. Army)

    Katie Cain

     

    Army Acquisition leaders are implementing a new approach to equipment modernization—a comprehensive 30-year strategic planning process designed to harvest key lessons learned from more than a decade of war, identify current and anticipated capability gaps, recognize emerging threats and provide a detailed analysis of the service’s investments in science and technology (S&T) and material development.

    As part of the 30-year plan, the Army is re-assessing S&T across all portfolios to create a detailed road map of our future capabilities, linking S&T investments with Programs of Record (PORs) and long-term sustainment strategy. This approach seeks to harness near-term capability and identify emerging technologies for the future in order to sustain an agile, deployable, technologically superior force able to keep pace with rapid technological change.

    The Army is working to lay out current and planned capabilities across a 30-year time span and aligning not only processes to support the plan but, but also aligning organizations in order to employ better business practices. As a result, in January, the Assistant Secretary of the Army for Acquisition, Logistics and Technology (ASA(ALT)) consolidated two directorates – the Office of the Chief Systems Engineer (OCSE) and the System of Systems Integration (SoSI) Directorate – into the Systems of Systems Engineering and Integration (SoSE&I) Directorate.

    The reorganization was the result of a directive to merge from Maj. Gen. Harold J. Greene, ASA(ALT) Deputy for Acquisition and Systems Management (DASM), in an effort to continue to advance the Army’s agile acquisition process, improve efficiencies, enhance long-term strategic needs planning and lower overall acquisition costs.

    A System of SoS
    SoSE&I provides coordinated system-of-systems (SoS) analysis, engineering, and architectural and integration products to facilitate how the Army efficiently shapes, manages, validates and synchronizes the fielding of integrated materiel capabilities. Comprising two directorates – SoS Integration (SoSI) and SoS Engineering (SoSE) – SoSE&I combines the systems integration and engineering offices into one organization, allowing for more efficient and effective cooperation to enhance the Army’s long-term planning objectives.

    “Bringing engineering and integration together gives us the ability to look at a system of systems across the Army and incorporate it into our long-term strategic planning,” said Terry Edwards, Executive Director, SOSE&I. “We’re able to look out at how we shape the Army’s architecture to be more capable, but also how we deliver that capability in a more efficient manner.”

    Soldiers, engineers, trail bosses and other personnel prepare for the Army's Network Integration Evaluation (NIEs) at the Integration Motor Pool, located at Fort Bliss, Texas. At the Motor Pool, the Army's System of Systems Integration (SoSI) Directorate leads integration of network equipment onto various vehicle platforms, and validates system performance prior to the start of the evaluations. NIE 13.2, the service's fifth NIE slated for May 2013, will focus on continued solidification of the network baseline and be used to execute the Warfighter Information Network-Tactical (WIN-T) Increment 2 Follow-on Operational Test and Evaluation (FOT&E). (Photo credit: Travis McNiel, System of Systems Engineering & Integration (SoSE&I) Directorate)

    The office now shapes and analyzes near-term and long-term systems integration and architecture engineering across Army program portfolios. This will allow the Army to better communicate to industry and the research and development community how portfolios align and integrate over time, allowing for better planning of independent research and development (IR&D) resourcing.

    Using the SoS approach, SoSI is charged with synchronizing integration and interoperability across Program Executive Offices (PEOs) and Army PORs, current force systems and other doctrine, organization, training, leadership, personnel and facilities (DOTLPF) elements to achieve integrated capabilities for a full-spectrum force. SoSE plans, analyzes, organizes and integrates the capabilities of both new and existing systems into a SoS capability to achieve necessary end-to-end coordination and performance. The third major component of the organization, the Chief Information Officer (CIO) coordinates across PEOs and serves as conduit to G-6 in the transformation to deliver timely, trusted, and shared information across the ASA(ALT) community. The result is better collaboration and more efficient and effective cooperation to enhance our long-term planning objectives.

    Combining Engineering and Execution
    “You have SoSE, which is the engineering side, and you have SoSI, which is the execution side,” said Col. Rob Carpenter, SoSI Director. “SoSI implements the plans and architecture that have been put together by SoSE. We do everything from lab-based risk reduction, all the way to capability set fielding. SoSI did this before the organizations merged, but now our starting point is an architecture that’s been produced by SoSE. The biggest benefit is having a direct connection between a handoff of products between the engineering side and the integration side so we’re not duplicating any efforts.”

    By eliminating the duplication of requirements for PEOs, SoSE&I is reducing duplicate budget requirements, and creating efficiencies in design, operations, and sustainment that will result in lower costs to the Army, and creating specifications/standards to simplify integration.

    Consolidating the organizations created an optimum balance of personnel and resources, which in turn is enabling more effective communication with industry partners, both small and large, who participate in the Army’s Network Integration Evaluations (NIEs). SoSI is the Army’s materiel integrator and synchronizer in support of all phases of the Agile Process and the NIE. NIEs are now helping to shape “agile” capability integration by assessing Soldier provided and technical operational test data to influence not only how the Army procures capability, but also how integrated network capability requirements are validated and refined.

    In April/May, the Army will conduct its fifth NIE, known as NIE 13.2, to execute the Warfighter Information Network-Tactical (WIN-T) Increment 2 Follow-on Operational Test and Evaluation (FOT&E). WIN-T Increment 2 is the backbone of the Army’s tactical network, providing key Mission Command On-the-Move capability beyond what is available in today’s operational force. A positive FOT&E will solidify the network baseline and allow additional industry and government solutions to be integrated and evaluated as part of the Army tactical network.
     
     


    Read more »
  • Mouth device in clinical trials as possible treatment for TBI

    The PoNS(tm) device is an electrode-covered appliance user's place on the tongue. The 20-30 minute stimulation therapy, called cranial nerve non-invasive neuromodulation, is accompanied with a custom set of physical, occupational, and cognitive exercises based on the patient's deficits. (Photo by Ellen Crown, USAMRMC Public Affairs)

    Ellen Crown

     

    The tongue is an amazing organ.

    Thousands of nerve fibers in it help us eat, drink and swallow. Without them, we would not taste. The tongue helps us speak. Quietly, its surface defends our bodies from germs.

    Yet for everything the tongue can do, perhaps one of its most exciting roles is to serve as a direct “gateway” to the brain through thousands of nerve endings.

    Now, researchers at the U.S. Army Medical Research and Materiel Command (USAMRMC) in collaboration with the University of Wisconsin-Madison and NeuroHabilitation Corporation are leveraging the power of those tiny nerves. They are aiming to restore lost physical and mental function for service members and civilians who suffered traumatic brain injury or stroke, or who have Parkinson’s or multiple sclerosis.

    The treatment involves sending specially-patterned nerve impulses to a patient’s brain through an electrode-covered oral device called a PoNS™, a battery-operated appliance placed on the tongue. The 20-30 minute stimulation therapy, called cranial nerve non-invasive neuromodulation (CI NiNM) is accompanied with a custom set of physical, occupational, and cognitive exercises, based on the patient’s deficits. The idea is to improve the brain’s organizational ability and allow the patient to regain neural control.

    NeuroHabilitation Corporation is funding the commercial development of the device, and has more than just financial investments in PoNS. The company was created with support by Montel Williams, a celebrity and military veteran who was diagnosed with multiple sclerosis in 1999. Williams was originally introduced to the research through an American Way magazine an attendant gave to him while he was on an American Airlines flight. The magazine included an article about work being done at the University of Wisconsin-Madison. Shortly after reading the article, Williams joined a study at the University of Wisconsin-Madison’s Tactile Communication & Neurorehabilitation Lab, which is in the Department of Biomedical Engineering.

    “The third day there I said we need this in the mouths of our Soldiers,” recalled Williams, who said he has always kept his ties with the military after serving in the Marine Corps and graduating from the Naval Academy.

    U.S. Army Medical Materiel Agency commander (left) COL Alejandro Lopez-Duke, a subcommand of USAMRMC, signs a Cooperative Research and Development Agreement (CRADA) on Feb. 8 with the NeuroHabilitation Corporation, founded by celebrity Montel Williams and his colleagues, including the University of Wisconsin scientists. This agreement allows the Army to further evaluate the PoNS(tm) device and its potential application as a treatment therapy for traumatic brain injury. This is USAMMA's first CRADA. Phil Deschamps, CEO of NeuroHabilitation Corporation, is also pictured (right). (Photo by Ellen Crown, USAMRMC Public Affairs)

    The PoNS prototype and associated therapeutic use were developed by University of Wisconsin-Madison scientists Yuri Danilov, Ph.D., Mitchell Tyler, M.S., P.E., and Kurt Kaczmarek, Ph.D. Their research is driven by the principle that brain function is not hardwired or fixed, but can be reorganized in response to new experiences, sensory input and functional demands. This area of research is called neuroplasticity and is a promising and rapidly growing area of brain research.

    Preliminary data from University of Wisconsin showed CN-NiNM to have great potential for a wide variety of neurological issues. Remarkably, the therapy doesn’t only slow functional loss, but also has the potential to restore lost function. That’s why researchers are saying that it “breaks the rules.”

    “When we talk about a brain changing itself, this is what we mean,” said Danilov.

    Because of its possible application for service members, especially those returning from combat with blast-related traumatic brain injuries, the USAMRMC signed a Cooperative Research and Development Agreement with NeuroHabilitation Corporation (founded by Williams and his colleagues, including the University of Wisconsin scientists) on Feb. 8 that allows the Army to further evaluate the device.

    “This exciting agreement leverages a unique private-public partnership,” said Col. Dallas Hack, director of the USAMRMC Combat Casualty Care Research Program. “By collaborating with University of Wisconsin-Madison and NeuroHabilitation Corporation, we maximize our resources to explore a potential real-world treatment for injured service members and civilians with a variety of health conditions.”

    Testing will include a collaborative study with researchers and clinicians at the Blanchfield Army Community Hospital in Fort Campbell, Ky., slated to start this month as the result of a year-long coordination effort led by Capt. Ian Dews, deputy director of CCCRP. The hospital is home to the Warrior Resiliency and Recovery Center, which is dedicated to the treatment of Soldiers with physical and neuropsychological problems due to service-related trauma.

    Additional patient testing will be conducted at other Veteran facilities and civilian medical institutions. Concurrently, the USAMRMC, in collaboration with its subcommands, the U.S. Army Medical Materiel Agency and the U.S. Army Medical Materiel Development Activity, will conduct environmental testing, such as temperature and humidity limitations for the device, to better understand potential constraints. At the conclusion, the USAMRMC hopes to seek U.S. Food and Drug Administration clearance for PoNS.
     
     


    Read more »
  • Common Operating Environment assists Army modernization

    A Soldier with 2nd Brigade, 1st Armored Division, demonstrates Warfighter Information Network-Tactical Increment 2 and mission command on the move applications at the Network Integration Evaluation 12.1 in October 2011. The next two Network Integration Evaluations at White Sands Missile Range, N.M., will help validate Mission Command and Common Operating Environment software. (Photo by U.S. Army)

    Kris Osborn

     

    WASHINGTON – As the Army matures its Agile Process, steps are being taken to align systems engineering and integration in an effort to project and synchronize trends in technology and standards across Army programs now and in the future. An outcome of this alignment is that the system of systems engineering community is now shaping the Army’s network infrastructure to be more capable and efficient, enabling industry to build devices and applications to standards and align research and development with the Army’s acquisition roadmap.

    To support this effort, the Army acquisition community is implementing the Common Operating Environment (COE). The COE is an approved set of computing technologies and standards that enable secure and interoperable applications to be developed and executed rapidly across a variety of computing environments (CEs), Army officials explained.

    “COE is essential to standardizing the computing infrastructure fundamental to Army network modernization, as the current strategic modernization approach stretches across a 30-year time span with a focus on identifying and leveraging emerging Commercial off the shelf (COTS) technology,” said Terry Edwards, Director of the newly formed System of Systems Engineering and Integration Directorate.

    COE, which includes an effort to synchronize a number of computing environments, was established, in part, to support a 30-year strategic modernization approach outlined by the Assistant Secretary of the Army – Acquisition, Logistics and Technology, ASA (ALT), Heidi Shyu. The concept informing this effort hinges upon the need to integrate promising emerging technology into established programs of record. At the same time, a key portion of this effort relates to the importance of linking modernization efforts with the Army’s Science and Technology (S&T) community.

    “Bringing the 30-year plan and COE together, we are going to identify a roadmap for each of the portfolios so that we can tailor our approach to address specific capability gaps,” said Edwards.

    With the initial implementation plan unveiled in early 2012, the thrust of COE consists of a set of technical standards and computing technologies with specified layers designed to facilitate integration and interoperability among software applications and hardware , said Phil Minor, Chief, COE Division, ASA (ALT). “COE is aimed at selecting and integrating a set of standards and protocols in order to achieve an open architecture, where protocols are not proprietary to a specific vendor,” he added.

    Now underway, COE implementation is aligning Army programs into six Computing Environments (CE) based on mission and environment (size, weight, power, and bandwidth) limitations. Each CE will be baselined on a common foundation (hardware and software) to facilitate reuse of common components. Each CE will be designed to interoperate with the others, thus forming the COE. The interface between CEs will be enabled through the establishment of Control Points, i.e., tightly controlled technical specifications that act as the blueprint for how data will be exchanged between CEs. Implementation will be in a phased approach expected to be executed over the next several years. The idea is to stop developing systems within different stove-pipes or silos of capability, but rather to allow applications and emerging technologies to rest upon a common computing architecture or foundation, Edwards explained.

    The open architecture concept upon which COE is based is fundamental to the ongoing development of a number of significant Army modernization programs which are currently making substantial technical progress. A few of these are: Nett Warrior – a hand-held digital display device for dismounted units, Enhanced Medium Altitude Reconnaissance and Surveillance System (EMARSS) – a fixed-wing Intelligence, Surveillance and Reconnaissance aircraft and Distributed Common Ground System – Army (DCGS-A) – an integrated intelligence database, explained Edwards.

    COE is fundamental to the Capability Set management approach currently being pursued by the Army, a method of capability development designed to integrate promising emerging technology with effective existing systems. The technologies which comprise these Capability Sets are engineered with the System-of-Systems approach to integration and development, designed to lower costs and facilitate interoperability.

    Many of these COE standards are currently being identified, integrated and evaluated through the Army’s Network Integration Evaluations (NIE), a series of ongoing operational assessments of technologies and capabilities taking place in the realistic, combat-like environment of White Sands Missile Range, N.M. In fact, two upcoming NIEs will help validate Mission Command COE software.
     
     


    Read more »
  • Double Arm Transplant Restores Function, Quality of Life for Soldier

    Sgt. Brendan Marrocco answers questions at a press conference on the day of his discharge from Johns Hopkins Hospital, six weeks after receiving a double arm transfer. (Photo courtesy of Dr. Smita Bhonsale, deputy director for Science and Technology for the Armed Forces Institute of Regenerative Medicine)

    Carey Phillips

     

    SGT Brendan Marrocco was the first service member during the Iraq War to survive a quadruple limb amputation, and now he’s the recipient of new arms, thanks to the first double-arm transplant at Johns Hopkins Hospital in Baltimore, MD, which took place Dec. 18, 2012.

    Marrocco was the beneficiary of research that’s been conducted since 2008 by the Armed Forces Institute of Regenerative Medicine (AFIRM), which has been bringing together the world’s leading scientists and physicians from academia and industry to develop innovative medical solutions to fully restore Warriors with traumatic injuries. AFIRM is managed and funded through the U.S. Army Medical Research and Materiel Command, which, along with the Department of Defense has provided and managed more than $6.5 million in hand transplant research—including sponsoring SGT Marrocco’s transplant.

    “A team of physicians and nurses helped to restore the physical and psychological well-being of someone most deserving,” said Dr. W.P. Andrew Lee, director of the Johns Hopkins School of Medicine’s Department of Plastic and Reconstructive Surgery, and head of the team that performed the transplant. “Brendan Marrocco had lost both arms and both legs serving our country nearly four years ago.”

    Marrocco, a sergeant in the U.S. Army, sustained his injuries in late October 2009 when an explosively formed penetrator entered his vehicle. With advances in protective equipment, battlefield evacuation and medical care, service members are surviving injuries that would previously have resulted in death, and they are learning how to live without one or more limbs. Recent advances in regenerative medicine provide hope to these service members who look toward a future where they may once again have arms and hands that they can use.

    The first Johns Hopkins double arm transplant Dec. 18, 2012. (Photo courtesy of Johns Hopkins Hospital)

    “[Marrocco’s] hope to lead a normal life has been boosted by the first double-arm transplant at Johns Hopkins,” said Lee.

    The DOD invests in medical research and development efforts that have the most promising ability to benefit our troops injured in combat.

    “Hand transplants, such as the bi-lateral procedure performed on Sgt. Marrocco, have the potential to restore not just function but also quality of life for our injured service members,” said Dr. Smita Bhonsale, deputy director for Science and Technology for the AFIRM.

    “It’s such a big thing for my life and it is just fantastic,” said Marrocco at the Johns Hopkins Press Conference Jan. 29. “It has given me a lot of hope for the future.”

    Marrocco, now 26 years old, continues to maintain a positive attitude and is looking forward to reaching for the goals he has set for himself and taking his ambitions as far as he can.

    “One of my goals is to hand-cycle a marathon,” said Marrocco.

    While the road to more functional use of his arms will be slow, Marrocco is confident that he will get there.

    “The nerves regenerate at the maximum speed of one inch per month,” said Lee. “Considering where we did the transplant, and where the nerves are connected, there are many, many inches and indeed many, many months – a couple years for that matter – before function will return.”

    Marrocco and Lee closed out the press conference with a message to fellow amputees to not give up hope. Advances in medicine are made every day.

    The AFIRM continues to support advances in regenerative medicine, generating hope for injured service members.
     
     


    Read more »
  • Raiders enter ‘the wild blue’ with UAV training

    Second Lt. Theresa Ross, intelligence officer, Headquarters and Headquarters Company, 4th Brigade Support Battalion, 1st Brigade Combat Team, 4th Infantry Division, launches a QR-11 Raven Unmanned Aerial Vehicle during a two-week training course at the Fort Carson (Colo.) Training Area, Jan. 17, 2013. The Raven is designed for quick assembly and deployment at the lowest levels of the military structure. Weighing only four pounds and operated by remote control, the Raven can gather video or photographic intelligence or direct forces to a target using an infrared laser. (Photo Credit: Spc. Andrew Ingram, 1st BCT PAO, 4th Infantry Division)

    Pfc. Andrew Ingram

     
    FORT CARSON, Colo. — Unmanned aerial vehicles soared through the sky under the control of 16 “Raider” Brigade Soldiers during QR-11 Raven training on Fort Carson, Jan. 7-18.

    During the two-week training certification course, Soldiers from 1st Brigade Combat Team, 4th Infantry Division, in a variety of career fields, learned how to launch, maneuver and land the small, unmanned aircraft in a variety of situations, including aerial security during movement operations, terrain reconnaissance and target acquisition during night operations.

    “The benefit of this training can’t be overstated,” said 2nd Lt. Theresa Ross, intelligence officer, Headquarters and Headquarters Company, 4th Brigade Support Battalion, 1st Brigade Combat Team. “The Raven is small, lightweight and portable. We use it for everything from site reconnaissance to target acquisition, so having several Soldiers trained and qualified to operate it is a huge combat multiplier.”

    The hands-on approach to the training helped the Raiders get a feel for the tactical importance of the unmanned aerial vehicle, as well as a solid understanding of its capabilities and limitations, said Ross.

    Second Lt. Theresa Ross, intelligence officer, Headquarters and Headquarters Company, 4th Brigade Support Battalion, 1st Brigade Combat Team, 4th Infantry Division, launches a QR-11 Raven Unmanned Aerial Vehicle during a two-week training course at the Fort Carson (Colo.) Training Area, Jan. 17, 2013. The Raven is designed for quick assembly and deployment at the lowest levels of the military structure. Weighing only four pounds and operated by remote control, the Raven can gather video or photographic intelligence or direct forces to a target using an infrared laser. (Photo Credit: Spc. Andrew Ingram, 1st BCT PAO, 4th Infantry Division)

    “Not a whole lot of intelligence officers get the chance to learn about this hardware first hand,” she said. “Because I have first-hand knowledge of the Raven, I will have reasonable expectations of what we can accomplish with it during a combat deployment.”

    The Raven is designed for quick assembly and deployment at the lowest levels of the military structure. Weighing only four pounds and operated by remote control, the Raven can gather video or photographic intelligence or direct forces to a target using an infrared laser.

    Having Soldiers from both combat arms and support career fields participating in the training ensures that no matter what the situation, U.S. forces can always get an “eye in the sky,” said Steve Rocovitch, small unmanned aerial system instructor, Rally Point Management.

    “The Raven is a great asset to the military, but only if it is used properly,” Rocovitch said. “I have confidence that these Soldiers can take what we’ve practiced these past two weeks and implement them in a complex deployed environment.”

    While one Soldier flew the Raven via remote control, others viewed the flight on a laptop, implemented flight patterns, and controlled its cameras and other tools.

    “In addition to learning how to operate the Raven, I gained a better understanding of all the things going on in an operating environment,” said Pfc. Glen Default, infantryman, Company B, 1st Battalion, 22nd Infantry Regiment, 1st Brigade Combat Team. “When I fly, I have to be aware of everything going on in my airspace and know what is going on ground side to accomplish my mission. It’s a much bigger picture than I have been exposed to.”

    The Raider Soldiers will continue to train in preparation for an upcoming deployment in support of U.S. Army Central Command.

     
     


    Read more »
  • Corps of Engineers completes Army’s largest solar array installation

    This aerial view of the solar photovoltaic array at White Sands Missile Range, N.M., was taken, Jan. 8, 2013. The panels cover 42 acres and provide more than four megawatts of electricity to the base. (Photo Credit: U.S. Army)

    James Campbell

     
    WHITE SANDS MISSILE RANGE, N.M. — The largest solar power system in the U.S. Army is coming online at White Sands Missile Range, N.M., and officials gathered Jan. 16, to mark the occasion with a ribbon-cutting ceremony.

    The Energy Savings Performance Contract, or ESPC, project, awarded and managed by the U.S. Army Engineering and Support Center, Huntsville, provides the sprawling desert base with a new 4.465 megawatt solar photovoltaic system, guarantees energy savings of 35,358M British thermal units per year, and reduces their energy consumption by 10 percent, said Wesley Malone, Huntsville Center project manager.

    “To date this is the largest solar project in the Army,” said Michael Norton, Huntsville Center Energy Division chief. “Projects like this are important because the impact of rising energy prices on installations has resulted in an adverse increase of utility budgets spent on existing, often inefficient or outdated equipment.”

    “ESPC projects provide energy efficient equipment resulting in a lower utility consumption,” Norton said. “Lower utility consumption reduces the DOD utility bills and assists in meeting federal mandates.”

    ESPC brings in private party financing for energy conservation measures at Defense Department garrisons. An Energy Savings Contractor, ESCO, provides capital and expertise to make infrastructure improvements on government facilities to significantly reduce Army energy, in exchange for a portion of the generated savings. In the case of the White Sands solar power system, Siemens Government Technologies, Inc., of Arlington, Va. was selected as the ESCO.

    Along with being the largest solar project, there’s another first in how the system at White Sands Missile Range was funded.

    “We used an Energy Services Agreement for the photovoltaic equipment along with the ESPC concept which was a first for the Army,” said Will Irby, Huntsville Center ESPC Program Manager.

    An ESA is an arrangement whereby a third party owns, operates and maintains the power generation system and provides electricity to the customer. This third-party ownership mechanism allowed for a significant tax grant from that reduced the project cost by $6.1M, Irby said.

    Construction of the $16.5M system started in July and was completed in December.

    Siemens was the solar system designer, integrator and is the operator. Their industry team included project construction by Texas Solar Power Company of Austin, Texas, with solar modules and tracking systems by Solaria Corporation of Fremont, Calif., and inverter manufacturer SatCon Technology Corporation of Boston. The project is owned, through the Energy Services Agreement, by Bostonia Group, also of Boston.
     
     


    Read more »
  • Team Apache announces nickname for the Apache Echo Model

    Sofia Bledsoe

     

    ARLINGTON, Va. — The world’s most advanced and lethal attack helicopter received a nickname by Team Apache at the annual government-industry Team Apache meeting at the Boeing facility in Arlington, Va., Jan. 8.

    The Apache Project Office selected “Guardian” as the winning entry for the AH-64E Apache.

    The “AH-6E Apache Guardian” will be a distinction from the AH-64D Apache Longbow that has been in service with the U.S. Army and with allied defense forces since the 1990s.

    The winning nickname was submitted by Gina Gill, Logistics Management Specialist from the Aviation and Missile Command Logistics Center, who wrote the following justification:

    “Although the Apache is known as the deadliest helicopter it is much more. The Apache functions as a safeguard for our Soldiers on the ground. It seeks and eliminates threats that would otherwise be undetectable and/or indestructible allowing our troops to complete their missions. The Apache is our Soldiers’ guardian in the sky.”

    Gill was recognized by Team Apache at the meeting. The announcement, she said, came as a complete surprise. “Once Colonel (Jeffrey) Hager started reading the explanation, I immediately knew. It was a little overwhelming, and I’m very humbled.”

    “First I started with what was different about this model, and it had to be one word,” Gill explained. “With all the technology upgrades that have been incorporated into the aircraft, one word did not seem to encapsulate the technological advances that the AH-64E brings to the battlefield.”

    After much brainstorming on what the new aircraft means to the Soldiers that it protects, Gill decided that “Guardian” was the best fit.

    “The Apache is not just deadly,” she said. “It brings fear to our enemies, and security to the Soldiers it protects. I work avionics and radar, and that helps with guarding and seeing where the threats are. That’s how I came up with Guardian.”

    Several hundred entries were submitted into the contest and judging was difficult.

    “Reflecting on this process, you sometimes don’t realize the amount of passion that people put into these names,” said Col. Jeffrey Hager, project manager for Apache Attack Helicopters. “For many, this is their livelihood, and you’ve just given them an opportunity to nickname the new Apache helicopter.”

    Organizations that participated in the contest included Team Apache military organizations such as the Apache Project Office, the Aviation and Missile Command, and industry team members such as Boeing, Lockheed Martin and Northrop Grumman.

    Leaders from each organization chose their top three to be judged by the Integrated Strategy Group comprised of leaders representing each organization.

    There were many good names and many excellent justifications, said Hager. “Some were good, some were great, and some were simply outstanding.”

     
     


    Read more »
  • Army Developing Next-Generation Surveillance Aircraft

    Scientists and engineers are working to develop the Enhanced Medium Altitude Reconnaissance and Surveillance System (EMARSS), which will allow commanders to gather real-world data in a combat environment. The system is equipped with a wide array of sensors, communications, and signals intelligence-gathering technologies An EMARSS aircraft is shown here in this artist's rendering. (U.S. Army Photo)

    Kris Osborn

     

    Army scientists, engineers, and program developers in a laboratory at Aberdeen Proving Grounds, Md. are making substantial progress with efforts to build and integrate a sophisticated battlefield surveillance aircraft called the Enhanced Medium Altitude Reconnaissance and Surveillance System (EMARSS), service officials said.

    “We want to build one bird with as many common capability packages on it as well as a full-motion video camera. We want it to be sensor agnostic.”

    The initial task, now underway at Aberdeen’s Joint Test and Integration Facility (JTIF), is aimed at engineering and integrating an EMARSS fuselage with cameras, sensors, software, antennas, intelligence databases, and electronic equipment so the Army can deliver four Engineering Manufacturing Development (EMD) aircraft to Afghanistan as part of a forward assessment of the capabilities, said Raymond Santiago, deputy product manager, Medium Altitude Reconnaissance and Surveillance Systems.

    “An EMARSS Forward Operational Assessment will place this system in the hands of our Soldiers, allowing them to inform an assessment as to whether the system meets the approved requirements. We will get to see the system being used to gather real-world data in a combat environment, with a high op-tempo. This will help us refine and establish the architecture for the platform,” an Army acquisition official explained.

    The Army plans to complete the EMARSS EMD Phase with a minimum of four systems (aircraft). Overall, the EMD contract has options to procure two additional EMD systems and four to six Low Rate Initial Production systems.

    Plans for the EMARSS aircraft include efforts to engineer a surveillance aircraft with a wide range of vital combat-relevant capabilities such as the ability to quickly gather, integrate and disseminate intelligence information of great value to warfighters in real time. It is being built to do this with an integrated suite of cameras, sensors, communications and signals intelligence-gathering technologies, and a data-link with ground-based intelligence databases allowing it to organize and communicate information of great relevance to a Commander’s Area of Responsibility, Santiago explained.

    The work at the JTIF laboratory, involving a significant development and integration-related collaborative effort with Army and industry engineers, is aimed at reducing risk through rapid prototyping and software and sensor integration. The EMARSS fuselage in the laboratory is a built-to specification model of a Hawker Beechcraft King Air 350.

    “The laboratory gives us the flexibility to try things out with the fuselage. This helps us with how we configure the equipment,” Santiago added.

    A key aim of the effort is to engineer and configure a modular aircraft designed with “open architecture” and a plug-and-play capability, allowing it to successfully integrate and function effectively with a variety of different sensor payloads, software packages and electronic equipment, he said.

    “We want to build one bird with as many common capability packages on it as well as a full-motion video camera. We want it to be sensor agnostic,” Santiago said.

    For example, the EMARSS aircraft is being configured to integrate a range of sensor packages such as Electro-Optical/Infrared cameras, MX-15 full-motion video cameras, and an imaging sensor known as the Wide Area Surveillance System, a technology able to identify and produce images spanning over a given area of terrain, explained Army acquisition officials.

    “An EMARSS Forward Operational Assessment will place this system in the hands of our Soldiers, allowing them to inform an assessment as to whether the system meets the approved requirements.”

    The EMARSS capability is unique in that it is engineered with a data-link connecting the aircraft to the Army’s ground-based intelligence database called Distributed Common Ground System-Army (DCGS-A). DCGS-A is a comprehensive integrated intelligence data repository that compiles, organizes, displays, and distributes information from more than 500 data sources. DCGS-A incorporates data from a wide array of sensors, including space-based sensors, geospatial information, and signal and human intelligence sources. A data-link with information from the ground-bases DCGS-A, will enable flight crews onboard EMARSS to use display screens and on-board electronics to receive and view intelligence information in real-time pertaining to their Area of Operations.

    “As they are flying over an area, the EMARSS crew is able to immediately pick up the latest information from what other nearby intelligence assets are picking up. They can immediately get results from DCGS-A and see it on their display screens. Intelligence experts on the ground are doing analysis, and they can send relevant information back up to the aircraft,” Santiago explained.

    Also, EMARSS’ plug-and-play, open architecture framework is being engineered so that the aircraft could potentially accommodate certain radar imaging technologies in the future, such as Ground Moving Target Indicator, a radar imaging technology able to detect moving vehicles and Synthetic Aperture Radar, a radar system able to paint an image or picture of the ground showing terrain, elevation, and nearby structures, Santiago said.

    Given that all the sensors, antennas, cameras, and electronics are designed to operate within a common architecture, one possibility is to strategically disperse various sensor capabilities across a fleet of several EMARSS aircraft, thus maximizing the ability to gather and distribute relevant intelligence information, Santiago explained.

    The Army Training and Doctrine Capability Manager for Intelligence Sensors is also working on the Capabilities Production Document which, according to plans, will eventually be submitted to the Joint Requirements Oversight Council before the EMARSS program can achieve a Milestone C production decision paving the way for limited rate initial production of the system in FY 13, Army acquisition officials explained.
     


    • KRIS OSBORN is a Highly Qualified Expert for the Assistant Secretary of the Army for Acquisition, Logistics, and Technology Office of Strategic Communications. He holds a B.A. in English and political science from Kenyon College and an M.A. in comparative literature from Columbia University.

    Read more »