search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Data entry and capture. Torough iden- tification and capture of authoritative, appropriate data is the key to success in the first tier of the domain. Te goal for initial data entry is to automate the collection of data as it is being generated at the work- ing level. At most, users will enter data once and it will be pulled into a central data repository, which will allow access for many other people and organizations based on their responsibilities. Te key to making data entry efficient and authori- tative will be identification and adoption of tools that help those at the working level to conduct daily business and satisfy requirements.


Data management system (DMS). Tis second tier will link different datasets across functions, weapon systems and phases of an acquisition program life cycle. It will capture, store and manage data from program conception to divestiture. Te creation of the DMS is the boldest and most complex portion of this vision. Te various Army programs and systems begin generating data as the concept is born and continue through development, produc- tion and sustainment up to divestment.


Within each phase of the life cycle, there are different data subdomains such as


At present, there is no efficient and effective way to store and share the data that leaders need when they need it. We are changing that.


A THREE-PHASED PLAN


Army acquisition needs a plan to implement a holistic data life cycle, with three major phases: data collection, data integration and interpretation, and data maintenance. (Image by sorbetto/Getty Images)


finances, schedules, performance specifica- tions, requirements and logistics. Program interdependencies will require the DMS to identify and link the cost, schedule and performance requirements between the programs. Once these datasets have been developed and linked, Army leaders will be able to use analytical tools to make better decisions.


Data-driven decisions. Te third tier will require the identification and devel- opment of data analysis tools to assist leaders with decision-making and resource planning. Te tools will likely use tech- nologies such as artificial intelligence and machine learning to identify life cycle red flags early—like overspending and production delays. Learning about those indicators early will help program manag- ers deliver quality products on time and


on budget, and will allow senior leaders to make better decisions on current and future modernization programs.


CONCLUSION Effective data management will be the key to efficient business operations in the future. Tis is another case where we bene- fit by looking to industry and emulating their success. If we use all the resources at our disposal, such as artificial intelli- gence and industry’s example of effective data management, we can ensure a future acquisition enterprise in which business processes are truly streamlined, with programs and products practically always guaranteed to be delivered on time and on budget. In the end, our Soldiers will be the beneficiaries.


https://asc.ar my.mil


7


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156