search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
KEYED IN


FIGURE 1


and develops a control for those pro- cess parameters by using tools such as process maps, failure modes and effect analysis, design of experiments, capa- bility studies and statistical process control.


PM CAS PILOT PROJECT Te first pilot project was the M31 Fin Assembly, which is used on the 120 mm Mortar Family of Munitions (FOM) to provide flight stability and to transfer energy for propulsion. Tis project was selected because of producibility con- cerns, and because the industry partner was a willing participant in the process, which is very important to the success of the effort. Te first four phases of the KPD&M process identified a feature that was not listed on the technical drawing or specification but significantly impacted safety and performance of all mm FOMs.


the 120


Incorporating this feature into the drawing and specification significantly reduced the performance and safety risks, and freed up resources for other areas of concern. Te pilot project also revealed the


increased costs resulting from a


feature that did not have a significant impact on performance. Tis feature had very tight difficult


tolerances that made it very to manufacture, reducing the


potential supplier base and boosting its cost. Increasing the tolerance on this fea- ture by twice its previous limits improved its producibility and cost-effectiveness. Eliminating seven nonessential inspec- tions and reclassifying inspection levels for more than 57 percent of the major characteristics further reduced costs.


Te KPD&M process also devel- oped mature aerodynamic models that expedite the response to requests for


variations, malfunction investiga- tions and future design changes, using


40 Army AL&T Magazine January–March 2015


Phase 1 KP Project Planning and Requirement Clarity, Stability, Rank and Priority


STEP 1: Create a KP project charter. STEP 2: Create a cross-functional team of experts to help identify a thorough set of candidate KPs. STEP 3: Generate and assess requirement clarity, classification and allocated flow-down.


Phase 2 Construct Diagrams to Identify Candidate KPs and Specific Areas of Focus


STEP 4: Structure a KP tree and functional flow diagrams. STEP 5: Generate input-output-constraint diagrams, parameter diagrams, noise diagrams and boundary diagram.


STEP 6: Identify unique subareas of focus; lean out, rank and prioritize the KP work areas. Phase 3 KP Measurement and Designed Experimentation


STEP 7: Prove measurement systems can be trusted and are capable. STEP 8: Design and conduct experiments (sequential flow of design of experiments). STEP 9: Analyze data using analysis of variance and other statistical methods to identify sensitivities and capability indices.


Phase 4 Identify KP Sensitivities and Balance KP Tolerances


STEP 10: Establish and verify tolerance ranges and percentage contribution to variation of key Ys and sub-Ys.


Phase 5 KP Implementation, Transfer and Control Plan for Manufacturing Supply Chain


STEP 11: Manufacture and production implementation plan for KPs. STEP 12: Evaluate the seven KP metrics and implement changes in control plan.


PHASES OF KPD&M


In five phases encompassing 12 steps, KPD&M rigorously identifies the design factors (key parameters) that have the most influence on desired performance and the associated manufacturing parameters requiring process control, then translates these into a manufacturing and production plan. (SOURCE: Clyde Creveling, PDSS Inc.)


fact-based decisions. Te risk of unfore- seeable outcomes affecting performance or safety is present even during manu- facturing or after the product has been accepted. Te mature aerodynamic models provide helpful information to address those issues.


To reduce costs further, the engineering team supporting the project developed a new acceptance methodology that will reduce the number of inspections by more than 70 percent while ensuring objective and measurable evidence of product conformance through process and statistical controls.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184