search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
LANGUAGE LESS FOREIGN


Automatic speech recognition


ENGLISH


Audio stream


SPEECH-TO-SPEECH TRANSLATION


Optical character recognition


Two-way machine translation


ENGLISH TEXT


Image TEXT-TO-TEXT TRANSLATION LOUD AND CLEAR


MFLTS is a Soldier-mounted system that provides speech-to-speech translation in two spoken languages, Iraqi Arabic and Pashto, and text-to-text translation in Modern Standard Arabic. The Army plans to add more languages to the system. The two translation functions process language in different ways, but both rely on advances in machine-learning technology to deliver accurate translations. (Graphic by U.S. Army Acquisition Support Center)


Transcription Text file Transcription Text file


Digitized speech


Transcription Transcription Text file Audio file


Two-way machine translation Speech synthesis


IRAQI ARABIC; PASHTO


MACHINE LEARNING 101 Te machine learning that supports the developments in human- language technology underpinning MFLTS draws on computer science, neuroscience, and artificial-intelligence research and theory on ways to enable a computer to learn or do something on its own without explicit programming by a human to do so. Without machine learning, MFLTS could be only as good as the humans who feed the system data and statistical informa- tion; thus there would be a built-in limit to how well it could translate.


Artificial neural networks, based loosely on the human brain’s structure, are what make machine learning possible and offer the potential to create truly artificial intelligence sometime in the future. Te networks that power machine intelligence learn in a very humanlike way: As Gideon Lewis-Kraus wrote in a Dec. 14, 2016, New York Times Magazine article about Google’s work on machine learning, they “acquaint themselves with the world via trial and error, as toddlers do.”


Te way that MFLTS is put together, these two parts are equally involved in translating. When a Soldier starts a translation ses- sion, the manager part of the app starts a session between the Soldier and the language pack’s translation tools that the Sol- dier will need to get the job done. During translation, the app captures input, manages processes and provides the translation to the user.


MAKING MAGIC Te real magic of MFLTS lives deep within the language packs, where science and art come together to enable software to hear, understand and interpret as much like a human linguist as possible.


Inside language packs are two or more language components that contain what are called “probabilistic models,” developed by software scientists and engineers using advanced machine learning techniques. An example of a probabilistic model is the way a smartphone “guesses” what you are typing before you’ve finished.


84 Army AL&T Magazine October-December 2017


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156