search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
COMMENTARY


what we need. Tat requires a focus on the data collection and reporting that we don’t have today.


As a NATO-ally friend of mine once told me, “You Americans are world class at collecting lessons learned. However, I don’t see you really learning any lessons from the data that you collect.”


Artificial intelligence offers the possi- bility of using the history captured in acquisition data, the lessons learned, to enable PMs to address the complexity of weapon system development head-on and learn from our lessons. AI can’t replace PMs, but its potential offers the chance for the defense acquisition community to get ahead of the relentless complexity of system development and be able to get cost, schedule and performance right. And it can permit us to get ahead of the prob- lems for once.


MODERNIZATION THROUGH AI


Members of the Carnegie Mellon University National Robotics Engineering Center set up equipment during a data collection event Jan. 13 at Fort Hunter Liggett. A partnership between Carnegie Mellon and the Army’s AI Task Force aims to modernize the Army and its processes through AI. (Photo by Patrick Ferraris, Army Artificial Intelligence Task Force)


the mission and make sense. More impor- tantly, we must be sure they are efficient. AI can and will do what we teach it, but it can’t think and it can’t tell if something makes sense.


CONNECTING THE DOTS Tere is good news in the potential for AI to address the complexities of weapon system development, but AI can’t fix every- thing. AI offers the possibility of radically changing the PM’s role from reactive to proactive. Te biggest challenge for PMs is to clearly define their expectations for AI


so the system will contribute to program success.


Te biggest challenge for DOD is the data—determining whether it’s the right data, in the right quantities and if it is clean and accurate. To perform at an opti- mal level, AI requires big data, and the data must be relevant to the way we do business.


Data collected “because we’ve always done it that way” wastes valuable effort that could be better focused on getting exactly


DR. CHARLES K. PICKAR is a senior lecturer at the Naval Postgraduate School (NPS) in Monterey, California, where he teaches program management, acquisition and systems engineering in the Graduate School of Defense Management. He has more than 30 years of management and research experience, including leadership positions at the Johns Hopkins University Applied Physics Laboratory, Science Applications International Corp., and Lockheed Martin Corp. He holds a doctorate in business administration from Nova Southeastern University, an M.S. in systems engineering from Johns Hopkins University, an M.A. in national security affairs from NPS and a B.A. in business from the University of Maryland. He is a graduate of the U.S. Army School of Advanced Military Studies. Te author’s last Been Tere, Done Tat column was “An Exercise to Experience,” in the Fall 2019 issue.


https://asc.ar my.mil 147


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172