search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
MIRROR Building a Better


Crunching data methodically provides clearer image of organizational diversity.


by Mr. Thom Hawkins Y


ou can never be sure, when you look in a mirror, that what you see is what other people see. For an orga- nization, measuring diversity can elicit the unsettling images of a funhouse mirror, and standing too long in


front of the mirror that makes us look tallest or laugh hardest will not reveal how we truly look. So, how do we know if our ideas of diversity mirror those of others? How can we create the healthiest, most genuinely and appropriately diverse workplace possible? What is the right mirror to use?


According to U.S. Equal Employment Opportunity Com- mission (EEOC) Management Directive 715, an organization conducting a self-assessment “shall compare their internal par- ticipation rates with corresponding participation rates in the relevant civilian labor force. Geographic areas of recruitment and hiring are integral factors in determining ‘relevant’ civilian labor force participation areas.”


Oh, shall we? Examples, please! Except that no examples are forthcoming from the EEOC, and our review of Management Directive 715 reports from across the federal government found that even when an agency is relatively centralized geographically (for example, the National Institutes of Health), it used the U.S. Department of Labor’s National Civilian Labor Force (NCLF) data as a point of comparison, and applied the term “relevant” only to limit the occupations considered, not the region.


Te U.S. is hardly homogeneous, from a demographic per-


spective. Te population of Washington state, for example, is considerably different from that of Washington, D.C. Tere’s more than just two letters separating Kansas and Arkansas. And while Hawaii and Rhode Island are both small states, it’s safe to assume that there’s a much higher percentage of native Hawai- ians or Pacific Islanders in Hawaii than in any other state—and probably very few actual islanders in Rhode Island. So, adjust- ing a single organization’s demographic makeup to fit a national profile is like going on a diet because a curved mirror is making you look fat.


It’s not you, it’s your mirror.


FINDING THE RIGHT MIRROR Some organizations may indeed have so many employees dis- persed across the country that using the NCLF data is the only appropriate comparison. However, short of rapid advances in plate tectonics, we are not going to radically shift a region’s demographic makeup—but we can adjust our recruiting to ensure a representative selection from the surrounding area.


Te Program Executive Office for Command, Control and Com- munications – Tactical (PEO C3T) is based at Aberdeen Proving Ground, in Harford County, Maryland. To identify the area from which we might expect to draw our workforce (for example,


ASC.ARMY.MIL


125


WORKFORCE


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162