search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
COMMENTARY


SAY IT AGAIN


The best, most effective way of communicating is through natural language speaking—getting AI agents to recognize natural language is key in future developments. (Image by Getty Images)


to periods of reduced interest and funding. Automatic speech recognition is not immune to this fate. As the acquisition commu- nity, we want to provide the best tools available. At the same time, if we field automatic speech recognition that performs below commercial expectations, trust becomes a factor in whether or not those tools are used. While the commercial world will no doubt continue development of this technology as long as there’s money in it, only some features of a tactical application are considered dual-use. Speaker detection, for example, has a use when more than one person shares a virtual assistant, but mitigating a tacti- cal noise profile is less applicable to commercial devices. While several organizations, including the Joint Artificial Intelligence Center and the RCCTO, have started testing various open-source automatic speech recognition models for particular tasks, the initial results have shown room for improvement with a tacti- cal noise profile. Training automatic speech recognition for high and variable noise levels is not something industry will prioritize for dual-use technology.


Te stakes for technology reliability are higher in a tactical situa- tion, where a mistake could result in the loss of a life rather than the wrong song being played. When we have a fight on our hands, it should be with the enemy, not with our technology, and we shouldn’t have to raise our voices just to be heard.


For more informat ion, contact Thom Hawkins at jeffrey.t.hawkins10.civ@mail.mil. For more information about


RCCTO and VAMO, contact Sean Dempsey at sean.e.dempsey.ctr @mail.mil and for more on JUDI, contact Matt Marge at matthew.r.marge.civ@mail.mil.


THOM HAWKINS is a project officer for artificial intelligence and data strategy with Project Manager Mission Command, assigned to the Program Executive Office for Command, Control and Communications – Tactical, Aberdeen Proving Ground, Maryland. He holds an M.S. in library and information science from Drexel University and a B.A. in English from Washington College. He is Level III certified in program management and Level II certified in financial management, and is a member of the Army Acquisition Corps. He is an Army-certified Lean Six Sigma master black belt and holds Project Management Professional and Risk Management Professional credentials from the Project Management Institute.


DR. REGINALD HOBBS is chief of the Content Understand- ing Branch at the U.S. Army Combat Capabilities Development Command Army Research Laboratory. He earned a Ph.D. and an M.S., both in computer science, from the Georgia Institute of Tech- nology and a B.S. in electronics from Chapman University. He has research interests and experience in the areas of software engineering, network science, natural language processing, artificial intelligence and cognitive science. He serves as an adjunct professor on the faculties of Howard University and the University of the District of Columbia.


https://asc.ar my.mil 151


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176