search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
COMPLEX GEOMETRY


by Steve Stark “ A


Remember, when you take a part out of a weapon system and replace it with an additive manufactured part, you’re putting lives on the line if that part is not fully capable. So we have to be very sure…we understand the science.


” 76 Army AL&T Magazine


dditive manufacturing shines with promise. Te discipline, also known as 3D printing, holds the promise of being the most powerful, efficient and versatile method of manufacturing, enabling a whole new world of prod- ucts—complex shapes, compound geometries and compound materials that


no designer could envision without it. It also holds the promise to speed logistics, reduce waste in materials and processes, and enable customization to a degree unimaginable with conventional manufacturing—and more.


“Te Army wants to be at the forefront of this advancement in technology,” said Dr. Philip Perconti, director of the U.S. Army Research Laboratory (ARL), at the opening of the new Advanced Manufacturing, Materials and Processes (AMMP) manufacturing innovation center in Harford County, Maryland, near Aberdeen Proving Ground, in October. Additive manufacturing, he continued, is at a pivotal stage in development, and the Army is basing strategic investments in agile manufacturing and material processing programs to leverage technology breakthroughs for rapid prototyping and development. He said that he foresees the mobile production of “replacement components to alleviate distance delays and provide performance enhancements and new capabilities through optimization of complex architectures and integrated functions.”


Tat vision sums up the Army’s effort to drive additive manufacturing technology forward and fulfill its potential to positively impact virtually every Army system. With aging and in many cases decaying organic manufacturing capabilities at depots around the country, the technology is a natural fit for the Army as it upgrades organic manu- facturing. ARL is partnering with the National Center for Manufacturing Sciences in the AMMP effort. Te center also launched its AMMP consortium.


In pursuit of its additive future, the Army has stood up the Additive and Advanced Manufacturing Center of Excellence at the Rock Island Arsenal Joint Manufacturing and Technology Center, Illinois. Tere’s a robust community of practice on milSuite. Defense Acquisition magazine devoted its entire November-December 2016 issue to additive manufacturing. All of this means that additive is very much in the Army’s sights, but it has a long way to go to meet its potential.


A YOUNG FIELD Invented in the mid-1980s by Charles Hull, who went on to found 3D Systems Inc., additive manufacturing is still very much a young field, especially when compared with the thousands of years that humans have been manufacturing. Conceived by Hull as stereolithography, the process still bears that imprint: 3D-printing design files have the designation “.stl,” for stereolithography (or standard tessellation language), but both are backronyms created to fit the initials. Tere are seven types of additive processes with their own pros and cons, and new methods within those process categories are being developed all the time.


For the Army, additive is attractive for how it can improve readiness. But readiness is a broad category, encompassing logistics, sustainment, repair and much more. From


January-March 2019


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152