search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
WHY THE HYPE?


wire, polymer filament, powders, liquids, gels, mixtures of glues and materials, and slurries. ASTM International (previously the American Society for Testing and Materials) notes seven primary manufacturing processes. Within those exists a growing list of more specialized methods. It is entirely possible that more have been developed since ASTM’s survey of the state of the art. Tat’s how fast the technology moves.


QUICK AND CUSTOM Quick custom design and build is one of the great promises of additive manufacturing as a category. In theory, every pair of shoes that every Soldier wears could be custom fit and printed to match the contours of a Soldier’s feet. Indeed, at least one major athletic shoe brand makes a shoe that’s entirely additively manu- factured, although it’s not customized to each pair of feet. Yet.


Tat customization possibility extends to both very large objects, such as the buildings that the U.S. Army Corps of Engineers’ Automated Construction of Expeditionary Structures program is making, to the extremely small, such as the 4D robots (the fourth dimension is motion) that the Institute for Soldier Nano- technologies at the Massachusetts Institute of Technology (MIT) recently developed. Dr. Xuanhe Zhao and his team created “soft, magnetic, 3D-printed structures that can transform their shape almost instantaneously by the wave of a magnet.”


Tat speed is the real breakthrough, Zhao said in an interview with Army AL&T, but the use of nanomaterials is nothing to sneeze at. Currently, he said, “the drawback of existing [4D] struc- tures is that their movement [is] very slow.”


Zhao, an associate professor at MIT and a researcher at the Insti- tute for Soldier Nanotechnologies, said, “What we developed is basically a new material system for 3D printing.” In additive manufacturing, conceptually, the process, the design and the materials are all equally important. Zhao’s team’s new method places nanomagnetic particles strategically within the soft plastic. Te placement and orientation of the materials enable controlled, rapid movement. “We use a new stimulation method, which is magnetic.” Watching video of the structures is a bit like watch- ing muscles twitch.


Indeed, Zhao, said, that’s the point. “You can reach the level of energy density and the power density of real muscles. So now, we can make it move very fast and forceful.”


Zhao said the technology that he and his team invented has real promise for biomedical devices that can be customized, but neither the printer nor the ink for the method they used existed, so they had to invent them. “We invented a printing method and the ink so that … researchers can print structures that they want—different shapes of robots, different shapes of actuators— and when we apply a magnetic field, you can actuate it or you can move this object.”


Watching the structures move, it’s not hard to imagine why Zhao said the team envisions them in medical applications. “We are actually trying to simulate the functions of the heart, so the heart beating, and muscle contraction inside the human body. And also, we are making this kind of magnetic materials, 3D-printed into, for example, catheters. But those catheters, you know, are smart. … Tey can steer themselves inside the human body. For example, in the blood vessel, they can make turns. … So that indeed is one … project we are working on.”


“We use four additive manufacturing machines there, which we run 24 hours a day, and what we’re building is going right into the hands of U.S. Soldiers.”


92 Army AL&T Magazine January-March 2019


‘ADDITIVE DOESN’T CARE’ Human beings have been making things for thousands of years. Te word “manufacturing” actually means “handmade,” coming from the Latin for hand (manu) and made (factum), despite current connotations of machine-made.


Doing something for thousands of years means that an almost intuitive understanding of the materials and processes has been passed down from generation to generation. Sloughing off the knowledge built from thousands of years of doing the same thing and perfecting it evolutionarily is not an easy task, and that can be a serious problem for designers—that and the addition of poten- tially millions more variables into the manufacturing process.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152