search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
ARMY AL&T


Prognostic


systems forecast the future health of an aircraft, just like weather forecast models predict daily conditions.


since all requirements—data, accuracy, organizational and training—flow from that implementation. Policies need to be created and changed as necessary to allow for probabilistic assessments of the future health state. Hardware requirements and standardization should be developed. Training should be done to guide humans on how to use risk-based assessments of the future and the limitations of the informa- tion provided.


Predictive and Prognostic Maintenance touches nearly every area of the sustain- ment chain.


While the work necessary to implement it is substantial, it is essential to enabling the Army Aviation Enterprise Sustain- ment Strategy, and its benefits to the Army include reduced logistical foot- print, improved operational availability and decreased life-cycle cost.


For more information on the Army Aviation Enterprise Sustainment Strategy and PPMx, please refer to the January issue of Army Aviation magazine or contact the authors at Andrew.Bellocchio@westpoint.edu or Danny.L.Parker20.ctr@army.mil.


A GROUP EFFORT


UH-60 Black Hawk helicopter mechanics with Bravo Company, 640th Aviation Support Battalion, prepare to loosen a helicopter blade before pre-maintenance for a Black Hawk at Camp Buehring, Kuwait, June 25, 2021. (Photo by Sgt. 1st Class Ryan Sheldon,


40th Combat Aviation Brigade)


DANNY PARKER, Ph.D., has more than 15 years of control theory, optimization, machine learning and signal processing experience in the defense industry. He has been the principal investigator in various government research projects totaling over $20 million. One of his major contributions is in the application of dynamical systems principles to the development of formal design methodologies for structural health monitoring systems. In this field, he has adapted and implemented modern control theory techniques in removing environmental effects and estimation of amounts of damage. He has also done extensive work in target estimation, tracking and


classification using acoustics. He


received his Ph.D. in electrical engineering, a master’s degree in control theory and a


bachelor’s in electrical engineering from Mississippi State University.


LT. COL. ANDY BELLOCCHIO, Ph.D., is the director of the U.S. Military Acad- emy at West Point Center for Innovation and Engineering, where he also teaches mechan- ical engineering. He previously taught aeronautics, thermodynamics, fluid mechan- ics, ballistics and design. Additionally, he has course-directed cadet capstone research in mechanical engineering and led interdis- ciplinary projects for the Academy at West Point. His active research is in aircraft reli- ability and structural health monitoring. He earned an M.S. and a Ph.D. in aerospace engineering from the Georgia Institute of Technology, and he holds a B.S. in mechan- ical engineering from West Point.


https://asc.ar my.mil 81


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140