search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
SUPPORTING THE FUTURE FORCE


capabilities that are not interconnected and cannot communicate with each other toward layered defenses that will work together to protect against a full spectrum of air and missile threats. For example, to communicate, Soldiers rely on remote systems such as satellites and aircraft, both manned and unmanned, as well as computers. Communication among joint forces and across multiple domains will be particularly important in future battles, where adversaries will attack land, air, sea, space and cyber operations.


CCDC is increasing combat capability by providing technology and engineer- ing expertise to support the Army’s air and missile defense strategy. Te tech- nologies will become critical capabilities that will increase in lethality and range to create domes of protection. (See side- bar, Page 74.) Tese domes of protection will work together and provide layers of defense, giving Soldiers the weapons they need to dominate any adversary and to protect U.S. and friendly forces and high- value assets.


DOMES OF PROTECTION Layer 1: BLADE (smallest, most mobile dome of protection)


At the tactical edge, maneuvering Soldiers need to have local protection to shoot moving targets such as unmanned aerial systems (UAS), which range from Group 1 (very small UAS) to Group 5 (the largest UAS). Te Ballistic Low Alti- tude Drone Engagement (BLADE) is a set of enabling technologies that are inte- grated with an armament system to defeat smaller unmanned aerial systems at close ranges, which includes the distance a Soldier can see a UAS without using binoculars. Its intuitive interface makes the BLADE easy for Soldiers to use.


The BLADE system works with the Common Remotely Operated Weapon Station (CROWS), and uses advanced fire control and precision targeting enablers to detect, track and defeat unmanned aerial systems. Mounted on a tactical vehicle, CROWS contains a sensor suite and fire control software that allow the warfighter to remotely engage targets.


CROWS can engage targets during the day or at night, and includes a daytime video camera and a thermal camera.


Anyone who has fired a machine gun knows how difficult it is to hit a moving target; the radar and fire control software in the BLADE enabled it to hit a small UAS with a short burst of fire during an engineering test that the BLADE team conducted on prototypes in June at Fort Dix, New Jersey.


A final Level 6 technology readiness demonstration for the BLADE system will be conducted later this year. Technol- ogy readiness levels refer to the maturity of a technology and range from Level 1 to Level 9. (See “Levels of Technology Readiness” graphic, Page 61.) Level 6 is a model or prototype that has been tested in an operational environment, such as an aircraft or vehicle. Once we get a technol- ogy to the point where it can transition out of CCDC, which is typically Level 6, it transitions to program managers and program executive offices who make the technology a program of record, which


CHECK FOR INCOMING


A close-up of the BLADE prototype mounted on a truck during an engineering test in June at Fort Dix, New Jersey. Along with the BLADE system, advanced radar technology helps determine the range, elevation, size and speed of incoming aircraft and projectiles. (Photo by Marian Popescu, CCDC Armaments Center BLADE team)


https://asc.ar my.mil


73


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156