search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
T


o achieve the sustainability goals mandated by multiple national and defense directives, including net zero energy, water,


and waste, Army installations face a com- plex set of challenges. Strategic decisions about which approaches to use and which technologies to adopt must be based on an integrated analysis at the community level. For example, a renewable energy technology may require a very high vol- ume of water to operate, so while fossil fuel use can be reduced, it will hurt water conservation efforts.


Sustainability will bring numerous ben-  oil, reducing greenhouse gases, and ensur- ing environmental stewardship to sustain installations for future generations. From an operational


perspective, a


industry, ERDC is on track to deliver products that will help installations and contingency bases meet


sustainability


requirements while improving Soldiers’ quality of life.


Following are details of key initiatives in this arena.


SUSTAINABLE FIXED INSTALLATIONS


self-suf-


  Soldiers can continue to accomplish their missions in the event of a natural disaster or terrorist attack on the infrastructure.


Contingency bases will gain the same advantages


by becoming water conservation, sustainable,


    - serving and producing energy on-site, maximizing


and


reducing waste equate to fewer supply convoys


required, eliminating risk for


Soldiers and freeing them to focus on more mission-related tasks.


The U.S. Army Engineer Research and Development Center (ERDC) Construc- tion Engineering Research Laboratory is involved in research and development (R&D) addressing all


ability. In partnership with other experts from


government, academia, and


To run NZI-E, an installation needs only to input information that already exists: geographic


information system


maps to show building types and uses, weather data, economic factors (utility rate


structures, equipment installation facets of sustain-


and maintenance costs, fuel prices), and documentation for existing equipment. Once the data and facilities have been added to the program, baseline energy     


Toward net-zero installations: A new planning tool ready to be launched this year is the Net Zero Installations Energy (NZI-E) virtual testbed for energy anal- ysis that generates optimal, life-cycle     analyzes energy generation, reuse, and conservation strategies using nonlinear network energy models and clustering - ing facilities with complementary energy 


Net Zero Installations Energy Waste and Water (NZI-EW2) builds on the NZI-E framework to support installation mas- ter planning for energy, water, and waste through an integrated modeling capabil- ity for optimizing resources.


Cost/energy


curves


and


savings-to-


investment ratios (SIRs) are generated for - gested for each building type, and load  step for cluster analysis.


After the tool optimizes all facilities, the user can identify clusters of buildings suitable for district


energy


solutions.


NZI-E then produces potential clus- ter equipment packages based on the installation and region. It also generates    including centralized and decentralized options. The tool then determines and optimizes equipment and pipe sizes (elec- tric, thermal, hydraulic) and performs economic simulations. It also calculates 


The result is an integrated demand reduc- tion and supply solution that provides the sizing along with initial and operating costs of every piece of equipment in the lowest-cost solution. In addition, instal- lations receive a prioritized list of projects with suggested phasing plans.


Preventing energy losses through building envelopes: The airtightness of a building enclosure or envelope is a major factor in the building’s overall energy consumption. Energy required to heat, cool, and control humidity


increases


    transfer through the enclosure as well as by convection.


An intact, continuous air barrier can reduce a building’s energy consumption by as much as 45 percent, usually at lit- tle or no extra cost to a construction or


A HOLISTIC VIEW The Virtual Forward Operating Base set of tools uses a holistic systems approach to planning sustainable contingency bases. (Photo by U.S. Army Engineer Research and Development Center (ERDC) Public Affairs Office)


ASC.ARMY.MIL


111


SCIENCE & TECHNOLOGY


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203