search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
PROCESSOR SWARM


semiconductor and neuromorphic char- acteristics at the nanoscale.


In addition to continuous innovations in scalable algorithms and software, future computing architectures like quantum networks, data flow computing, and cyber- and electromagnetic-secured het- erogeneous processors are going to play a role in overcoming distributed process- ing shortcomings that surface in military scenarios.


DISTRIBUTED PROJECTS FOR DISTRIBUTED RESEARCH ARL is working toward the capabilities of the next generation of distributed processing, in collaborative projects with academic institutions and industry and in internal programs.


External collaborative programs that address challenges with distributed processing from algorithms and theory include the international technology alli- ance with the United Kingdom Ministry of Defense,


the internet of battlefield


things, distributed and collaborative intelligent systems and technology, the U.S. Army High Performance Com- puting Research Center, the Center for Distributed Quantum Information and ARL’s Single-Investigator Program,


executed through the Army Research Office.


Tere are also internal projects that lay some of the foundation. For example, we work with IBM, Purdue University and the Lawrence Livermore National Laboratory in understanding the pro- gramming and use of neuromorphic processors—brain-inspired computing. Tese neuromorphic processors have proven quite adept at machine-learning tasks, yet consume 1,000 times less power than conventional processors.


CONCLUSION Te Army has been at the forefront of computing and distributed processing and continues to make investments in related research to shape how the future Army will fight and win. Te complexi- ties of distributed processing become more clear as the way in which humans will engage with distributed artificially intelligent systems becomes more defined.


Te reliance of intelligent systems on wireless communication and networked processes makes them vulnerable to cyber, physical and electronic attacks. Tus, it is necessary to develop technolo- gies that mitigate those risks and keep systems functional in the face of such


attacks. In the current and future world, this requires innovations in distributed processing and computation on and off the battlefield.


For more information, contact the authors at


raju.r.namburu.civ@mail.mil or joseph.m.barton12.ctr@mail.mil.


DR. RAJU NAMBURU is chief of the Computational Sciences Division at ARL. He has more than 100 publications in various journals and refereed papers in international conferences and symposiums in the areas of computational sciences, computational mechanics, scalable algorithms, network modeling and high- performance computing. He is a Fellow of


the American Society of Mechanical


Engineers and a member of the U.S. Association for Computational Mechanics. He holds a Ph.D. in mechanical engineering from the University of Minnesota, and received master of engineering and bachelor of engineering degrees in mechanical engineering from Andhra University in India.


First realized around 1983 at Aberdeen Proving Ground, distributed processing has evolved over the last several decades as information technology has expanded exponentially.


134 Army AL&T Magazine January-March 2018


DR. MICHAEL BARTON, a senior sci- entist for Parsons Corp., provides contract support to ARL. He has been at APG since 2001. His entire career has been in physics-based modeling and simulation and high-performance computing. He previ- ously served as a consultant in the aerospace industry; as a contractor supporting the Air Force at Arnold Air Force Base, Ten- nessee, and NASA in Ohio; and with the Boeing Co. in Seattle. He received his Ph.D. and his B.S. in engineering science and mechanics from the University of Tennessee, Knoxville, and his master of engineering degree in aeronautics and astronautics from the University of Washington.


+


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276