search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
A TEAM EFFORT


Arconic Inc.), Constellium N.V. and BAE Systems Inc., respectively. Te forged- hull effort was the first innovation and is the focus of this article.


Stakeholders from the U.S. Army Research, Development and Engineering Command (RDECOM), the Program Executive Office for Ground Combat Systems (PEO GCS) and the MCOE determined the desired results for the APOT project. PEO GCS experts sought affordable hull designs with integrable manufacturing techniques, while the MCOE needed hard data to inform underbody blast


requirements being drafted for a number of programs.


While experts agreed that manufacturing a lower hull and live-fire testing with an explosive charge similar to an IED would be useful, that would not answer the essential question: “What does it mean for force protection for the Soldier?” Experts concluded that to answer this question would mean taking the lower hull and fabricating an entire BH&T, installing energy-absorbing seats and floors along with crash dummies, conducting live-fire testing and then assessing injuries. To accomplish all this, the team looked for partners.


Fortunately, at the time, the Defense Advanced Research Projects Agency


SINGLE HULL FORGED


This single-piece hull of 7020 aluminum alloy was successfully forged by Alcoa (now Arconic) in July 2014, one year after the APOT program’s kickoff. It’s the world’s largest aluminum forging. (Photo by Arconic Inc.)


(DARPA) Soldier Protection Systems (SPS) program was also “developing and demonstrating


lightweight


modeling and simulation. Te hull design, along with the material


requirements, armor


material systems to defeat current and potential ballistic and blast threats with performance substantially better than today’s protective armor systems.” As part of that effort, it awarded BAE Systems a project to develop an aluminum com- bat vehicle hull capable of withstanding very large underbody IED blasts. Col- laboration among APOT, SPS and BAE Systems project managers


led them to


agree that the APOT underbodies would form the basis for the SPS designs. Select designs would be fabricated into BH&Ts to demonstrate the first element of force protection.


A HULL NEW DEFENSE Te forged hull effort kicked off in sum- mer 2013; APOT forming and welding efforts started a year later. Acquisition stakeholders required material used for the hull to be weldable using conven- tional Army practices, and TRADOC requested data in one year. Te APOT effort was scheduled to produce a hull in 18 months; however, Alcoa made it possi- ble to accelerate the program by funding the massive 180-ton steel die set required for forging.


During fall 2013, the forged hull geom- etry was developed and refined through


drove the team to select a European alu- minum armor alloy, 7020, which had never been produced commercially nor forged in the United States. Fortunately, the U.S. Army Research Laboratory (ARL) studied aluminum alloy 7020 in a 2011-13 foreign technology assess- ment program and developed a good understanding of its weldability and bal- listic response. However, as 7020 had never been manufactured in the United States, the Army needed to develop the alloy


chemistries and process param-


eters for large-scale domestic industrial production.


In fall 2013, the U.S. Army and the


Israeli Ministry of Defense were clos- ing out capability assessment activities as part of the Ground Combat Vehicle analysis of alternatives. Te Israelis learned of the forged hull effort and expressed interest in collaborating. Since high-performing, energy-absorbing tech- nologies were required for the BH&T, a U.S.-Israel project agreement on armored vehicle underbody blast testing allowed energy-absorbing technologies developed by Israel to be adapted and installed into the forged BH&T.


During this time, RDECOM’s Tank Automotive Research, Development and


210


Army AL&T Magazine


January-March 2018


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276