search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
UNDERSTANDING ARMY ACQUISITION


SIMULATION ACCURACY


An ERDC visualization of a CH-47 Helios computational fluid dynamics mesh system helps engineers understand the quality and accuracy of simulations. (Photo courtesy of High Performance Computer Modernization Program)


Present acquisition programs


largely


follow an empirical “design-build-test” iterative methodology. Tis results in late discovery of design flaws, issues of imma- ture technology and system integration problems. Rework and redesign efforts contribute substantially to cost over- runs and schedule delays. By employing a “model-test-build” paradigm, optimized engineering designs can be developed early in the acquisition process using CREATE tools. Costs can be substantially reduced; schedules shortened; and design and program flexibility and agility increased. Above all, the reduction of design flaws, the quick and flexible development of sound engineering concepts and designs, and beginning the systems integration engineering much earlier in the acquisi- tion process all improve the performance of acquisition programs.


IMPACT ON ARMY PROGRAMS High-performance computing supports the entire life cycle of a weapon system. Using the Army’s helicopters as an exam- ple, high-performance computing is critical to the updating of legacy plat- forms such as the CH-47 Chinook and the H-60 Black Hawk, as well as the Army’s Future Vertical Lift effort. CREATE-AV’s (Aviation Vehicles) Helios software is


a high-fidelity, multi-physics analysis tool for rotary-wing aircraft. Helios can calculate the performance of a full-sized rotorcraft, including the fuselage and rotors. It can also handle arbitrary rotor configurations, and analyze and predict prescribed maneuvers with tight coupling of rotor aero-structural dynamics. A highly accurate treatment of the complex air flow generated from rotor blade tips— vortex shedding—gives Helios the unique capability to assess the interaction of these vortices with the fuselage and nearby rotor blades. Te large-scale calculations with Helios are run on the program’s supercom- puters. Helios offers the ability to predict phenomena that, a decade ago, could only be observed in flight test.


Te CH-47 Block II Advanced Chinook Rotor Blade is designed for improved lifting capability in hover without compro- mising forward speed. Initial flight tests showed high-control system loads for the rear rotor in high-speed forward flight. Army engineers, Boeing Co. and the Proj- ect Manager for Cargo Helicopters under the Program Executive Office for Aviation formed an engineering team to address this problem. Helios was used to capture the complex, unsteady aerodynamics phenom- ena and explore design space to restore


high-speed performance while retain- ing the modified rotor blade’s benefits for hover. Army engineers have been able to identify potential performance issues and evaluate mitigation designs. Te modified rotor blade design was successfully tested in late 2018, resulting in a significant enhancement to the combat capability of the 400-plus Chinooks in the Army inven- tory. In testimony to the Senate Armed Services Airland Subcommittee, Lt. Gen. Paul A. Ostrowski, principal military deputy to the ASA(ALT), highlighted the importance of the High Performance Computing Modernization Program to Army acquisition programs.


“It is absolutely critical,” said Ostrowski. “With respect to the Block II Chinook (helicopter), we have avoided about $50 million of cost in terms of flight based on being able to supercompute the effects of the new rotor blades.”


Te Joint Multi-Role Technology Demon- strator (JMR-TD) program is a precursor to the Army’s Future Vertical Lift effort, intended to demonstrate transforma- tional vertical lift capabilities to enable programmatic decisions. Requirements for the JMR-TD aircraft were established in 2012. In 2013, technology investment


https://asc.ar my.mil 67


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176