search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
THE KNOWN UNKNOWNS


production. Tis de-risking could potentially save millions of dollars. Te data from the non-selected candidates is “learned” by GUIDE and able to be drawn upon for future runs.


Recently, GUIDE researchers successfully used AI technology to restore the effectiveness of COVID-19 monoclonal antibodies that have lost function due to viral evolution. Restoring the func- tion of antibodies is a game-changing breakthrough to preserve the life and efficacy of medical countermeasures. For example, at the height of the COVID-19 pandemic, researchers struggled to produce MCMs that were effective against the constant new variants of the virus. Using AI to restore antibodies can help keep up with changing viruses by giving the medical community a chance to prolong the lifespan of MCMs.


“It could take decades and millions of dollars to develop a successful MCM. With GUIDE, AI/ML is accelerating the process by helping us see what a viable MCM option could be in a shorter amount of time,” said Nicole Dorsey, deputy joint


project lead for JPL CBRND EB. While this technology gives the medical community a head start, it does not replace the human researcher. It would, instead, make the human researcher’s job more important.


AI/ML AS A TOOL AND PARTNER, NOT A REPLACEMENT Even if AI/ML can generate a world of possibilities, human researchers are still needed to test and select the best fit, under- standing the broader context of the needs and requirements, and applying scrutiny and methods to eliminate the possibility of data bias or other nuances that computers are unable to discern.


Since GUIDE is an agnostic system that analyzes data from a molecular level, there is no potential gender or racial bias to consider. Once the selected computations enter a clinical trial, the medical community can ensure that bias is avoided by enrolling diverse human subjects in the studies to understand the medi- cal impact across populations. Computations can only produce


GUIDE THE WAY


GUIDE is an interagency program between JPL CBRND EB, the Department of Energy and other interagency, academic and industry partners. GUIDE’s mission is to use its integrated computational and experimental capabilities to accelerate drug development for the warfighter by harnessing the power of advanced simulation and machine learning. (Graphic by Maya Munk, JPEO-CBRND)


16


Army AL&T Magazine


Fall 2024


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120