search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
EMERGING TECHNOLOGY AND MODERNIZING THE ARMY


NETWORK RESILIENCY


MULTIPLE PATHS LEAD TO


Army agencies work to improve satellite communications increasing network capabilities and ease of use for all Soldiers.


by John Anglin and Amy Walker H


eadlines of recent global conflicts continue to underscore the critical need for secure resilient network communication options on the battle- field to enhance survivability and lethality. Te Army fully expects any future adversary to use every means at their disposal to jam or corrupt the


network. When units can’t pass the data that commanders need to make rapid informed decisions, both the mission and lives are at risk.


To enhance the network for future large-scale combat operations, the Army is in a state of continuous network transformation, with one eye on shifting battlefield tactics, and the other on emerging commercial and military technologies that could potentially help to combat them.


One way the Army is enhancing network resiliency is through agnostic transport diver- sity by increasing the number of network communication pathways available to units. Te more signal pathway options that exist for data to travel through, the more resil- ient the network becomes, keeping Soldiers and their commanders connected, informed and lethal.


Te Army’s network transformation includes the ability to simultaneously and automatically communicate across numerous frequency bands, satellite orbits and line- of-sight and beyond-line-of-sight systems. To be successful on complex future battlefields against sophisticated enemies, the Army will need to use more of the planet’s spacescape, expanding beyond the traditional geosynchronous Earth orbit (GEO). Tis signal pathway diversity includes multiple frequency bands and high throughput, low latency (HT/LL) multi-orbit network transport, leveraging low Earth orbit (LEO), medium


https://asc.ar my.mil 59


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120