ROBOTS DEVELOPING MUSCLE MEMORY
THE MANAGER OF THE FUTURE
Researchers at ARL are exploring methods for robots to learn and use models that enable faster autonomy by assessing when and under what conditions different methods of sensing perform well or poorly. (Image by iLexx/iStock)
experience a player has about how to move his or her body to play the game, particularly for the position. Te execution of an assumed mental model is called “feed forward control.” A men- tal model that is incorrect or incomplete, such as one used by an inexperienced player, will reduce accuracy and repeatability and require more time to complete a task.
We can assume that even professional baseball players would need significant time to adjust if they were magically trans- ported to play on the moon, where gravity is much weaker and air resistance is nonexistent. Similarly, another instance of incorrect models can be observed in the clumsy and uncoor- dinated movements of quickly growing children; their mental models of how to relate to the world must constantly change and adapt because they are changing. Nevertheless, humans are quite resilient to change and, with practice, they can adapt to perform well in new situations.
A major focus of much current research at the U.S. Army Research Laboratory (ARL) is creating a robot like Rosie,
104 Army AL&T Magazine January-March 2017
capable of learning and executing tasks with the best preci- sion and speed possible, given what we know about our own abilities.
NOT QUITE ‘INFINITE IN FACULTY’ In general, we can say that Rosie-like robot performance is pos- sible given sufficient advances in the areas of sensing, modeling self-motion and modeling interactions with the world.
Robots “perceive” the world around them using myriad inte- grated sensors. Tese sensors include laser range scanners and acoustic ranging, which provide the distance from the robot to obstacles; cameras that permit the robot to see the world, similar to our own eyes; inertial measurement sensing that includes rate gyroscopes, which sense the rate of change of the orientation of the robotic device; and accelerometers, which sense acceleration and gravity, giving the robot an “inner ear” of sorts. All these methods of sensing the world provide different types of informa- tion about the robot’s motion or location in the environment.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176