search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
JUST ADD WATER!


The Army Research Laboratory’s new nanomaterial paves the way for ef ficient and green energy solutions.


by Ms. Jacqueline M. Hames L


ike many great scientific advancements, the U.S. Army Research Laboratory’s (ARL) new nanomate- rial was invented by accident. Materials engineers at ARL on Aberdeen Proving Ground, Maryland, were


trying to engineer a nanostructured aluminum alloy in January 2017 when, during polishing and hardness testing, they discov- ered the aluminum powder was disappearing—it was reacting with the water used in the polishing process to create hydrogen. While the discovery surprised ARL scientists, they knew they had come across something quite extraordinary.


“Tis is the main thing: It can generate power on demand in the field, wherever we need it,” Dr. Anit Giri, materials engi- neer with the Materials and Manufacturing Science Division at ARL, said of the powder.


EUREKA Te nanogalvanic aluminum-based powder came about as scien- tists were researching better, stronger materials for armoring Soldiers and vehicles—specifically, an aluminum with the strength of steel. Tis effort to make better materials for armor is ongoing, despite the excitement of new discoveries like the powder.


Dr. Chad Hornbuckle, materials engineer on the powder’s devel- opment team, explained that the original intent was to create a nanostructured aluminum alloy that would have increased strength, making a material that was lightweight like aluminum but comparable in strength to steel. A material on the nanoscale is less than 100 nanometers long, Hornbuckle said. (A nanome- ter is one-millionth of a millimeter; a millimeter is very small, but is visible to the naked eye.) Te nanoscale is often used to measure dimensions of matter on an atomic level.


“All metals are made up of grains, similar to sand on a beach, but instead of being sand, it’s whatever your metal is,” Hornbuckle explained. “We were trying to make a bulk piece of aluminum, but the grains themselves were on the nanometer scale.”


Te aluminum material they were trying to create began as a powder, and during the usual analysis process, it had to undergo hardness testing, said Anthony Roberts, also a materials engi- neer on the development team. Te team pressed the powder into a compact, a solid piece, to polish to a mirror shine for the hardness test. “Well, while we were polishing it, we noticed it disappeared, so we made another compact, and we start polishing it, and we noticed it started disappearing real quick,” Roberts said.


HTTPS: / /ASC.ARMY.MIL 51


SCIENCE & TECHNOLOGY


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144