search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
EVERY RECEIVER A SENSOR


FIGURE 1 8 billion Population increase by 2025 2 billion 1950


Waveform complexity


1975 SOURCE: UN Population Division (2017 Revision)


Frequency range & BW


Signal/spectrum density


Signal diversity


Processing power


Propensity toward micro cells and shorter-range communications


2000 2025


LTE advanced, 5G ultra-wideband, etc.


VLF, HF to ->mmW, FSO, LiFi


20-50 GB over the air


12B devices today, 100-200B devices anticipated by 2025


IOT M-to-M communications 802.11.xxx 803.15.xxx


CPU & GPU performance increase by 100x


KEY MORE PEOPLE, MORE DEVICES, MORE DATA


Commercial communications are growing in complexity with multi- ple improvements anticipated over the next decade. Coupled with congested and contested environments, this type of envi- ronment will challenge the Army’s ability to operate on the electromagnetic spectrum, and in real time. (Graphic by CERDEC)


BW: bandwidth CPU: central processing unit FSO: free space optics GB: gigabyte GPU: graphics processing unit HF: high-frequency IOT: internet of things


Li-Fi: light fidelity wireless communications LTE: Long Term Evolution technology mmW: millimeter wave M-to-M: machine-to-machine VLF: very low frequency


Signal range


major technical barriers that will need to be overcome. To address this new challenge, the military must re-evaluate how its systems can be tasked to do more than just their intended function. It must develop new and novel sensors, and find new and novel ways of using existing sensors, that can acquire and discern signals of interest within such dense information environments. And it must use innovative data-processing techniques, such as machine learn- ing, to help make sense of all this information.


A SPECTRUM OF CHALLENGES To support mission planning and execution, commanders will need situational understanding of both the physical and cyber- space domains. For instance, what adversaries exist in the area and how are they communicating? Are they using the available local infrastructure? What applications are they using to communicate


70


and share information—are they using Gmail? Are they chatting on Telegram or Snapchat? What radio frequency spectrum do they use? Where are they? To help answer these and other ques- tions, the U.S. Army’s research and development community is investigating innovative approaches to identifying signals of interest from such future multifaceted and signal-rich environ- ments. (See Figure 1.)


To obtain situational awareness of the electromagnetic spectrum, the Army currently uses large, dedicated electronic support and intelligence collection systems, mostly mounted on aircraft. Such assets are relatively few in number, overtasked and, if air superior- ity is not assured, must be situated a considerable distance behind friendly lines to maintain freedom of maneuver. In the electron- ically dense battlefields of the future, this traditional approach


Army AL&T Magazine


October-December 2018


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144