search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
EVERY RECEIVER A SENSOR


Tis technology is being used today to provide wireless service to Puerto Rico as it continues to recover from Hurricane Maria, the Category 4 storm that struck the U.S. territory in Septem- ber 2017. Additionally, under the ERASE portfolio, CERDEC is investigating the efficacy of using a very large number of very small and inexpensive sensors—like radio frequency sensors, or seismic sensors, for example—that can be distributed in mass quantity over a region of interest to acquire specific insights into the local environment. (See Figure 2, Page 71.)


LEVERAGE ALL AVAILABLE DATA Our tactical systems already collect a large amount of information as part of their normal operation. However, this data is hidden within the device and is often not available to external systems for further processing. For example, practically all modern fielded communication systems monitor their own performance to help maintain quality of service. Te system does this by measuring quantities such as received signal power levels and bit error rates. Most of this monitoring, and any remediating action taken by the device, are invisible to the operator.


For the user, such information will most often be superflu- ous. However, if this currently invisible data were made visible and then correlated across a large number of systems, it might provide near-real-time warnings of events within the electromag- netic environment. One radio experiencing a high error rate is, in itself, not very consequential. A couple dozen radios all report- ing higher than normal error rates within close proximity of one another could, however, be an indication of adversary electronic attack activity.


SPEED COMMANDERS’ DECISIONS Data acquisition is only the first step in situational understanding. Once obtained, data must be ingested, aggregated and analyzed in various ways to derive meaning. For instance, simply collecting the total number of automobile accidents that have occurred over a period of time is not by itself very useful. However, correlating this data with other factors, such as location, weather conditions and time of day, could enable the identification of hazardous road- ways and intersection that could then be remedied.


Future operational environments will necessitate the collection of extremely large and diverse data sets that humans will not be able to process using traditional software approaches. To over- come this, CERDEC will employ novel big-data processing and machine-learning techniques to reduce the time it takes to process such vast amounts of information.


ON A ROLL


An adversary dug in to a dense urban environment, using robust communications links and taking advantage of extensive local infra- structure, would have an advantage over U.S. troops trying to decipher the sheer complexity of digital signals—unless military procedures change and allow units to exploit all possible sources of data, includ- ing sensors primarily designed for something else. (U.S. Army photo)


Furthermore, such data sets will need to be stored as part of a distributed data-management system that will allow processing to occur at points close to the tactical edge; the ideal scenario is for data to be processed at the lowest level possible, as close to where it was collected as possible, so that resources aren’t wasted sending large amounts of data back to higher headquarters. Tis will ensure that we do not overburden our tactical networks by attempting to move data across tactical communication links, and that relevant insights are made more expediently at the levels where they are most beneficial. In such an architecture, insights derived from data held at lower levels can be condensed and reported up the chain, where rhey can be further aggregated and analyzed to derive broader insights.


CONCLUSION It’s the year 2030. U.S. armed forces have been ordered to liberate and provide security for a city that is occupied by a hostile force. Upon initial entry, they use all available dedicated and opportu- nistic sensors at their disposal to validate and enrich previously known intelligence. Based on this new data, advanced analytics calculate that the adversary is operating within a small section


72


Army AL&T Magazine


October-December 2018


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144