ARMY AL&T
GOING THROUGH THE MOTIONS
Jim Dotterweich, research scientist in the Autonomous Systems Division, monitors a test robot as it demonstrates a maneuver using the self-righting software. The software, which comes in two parts, analyzes the robot’s structure and plans and executes self-righting maneuvers.
in the palm of your hand are limited in how much memory they have and how much processing they can do in real time, he said.
“When I talk about having these two pieces [of software], the analysis piece can happen before the robot ever hits the field, and it will generate maps for the robot that can be stored fairly compactly, in terms of memory … but [the robot will] still be able to use [the maps] without requiring a great deal of process- ing,” Kessens said. Te idea, he continued, is to use the analytical side of the software to thoroughly assess the robot’s morphology beforehand and then capture that information in a compact form to run as a separate piece of software on the robot that the robot would then use to navigate and self-right. Te assessment deter- mines all of the orientations a robot could stably sit in for a given joint configuration on a given ground angle, Kessens said. Te software figures out how those states connect with one another, forming the map—kind of like the way a human remembers how
to get up a certain way from a particular starting position, such as lying on your back. “Once you’ve done it, you know how. You don’t have to think about it much because you can access that knowledge,” he said.
Of course, not all of the Army’s current robotic systems have the same morphology—not all of them are tracked with a single arm, like iRobot’s 510 PackBot or Qinetiq’s Talon—and future robots will be even harder to predict. “Future robotic systems may be significantly more complex—we may have a humanoid robot, and we’re going to want that humanoid robot to be able to pick itself up,” Kessens said. Tis futuristic variety presents an interesting challenge for Kessens: How do you tell a variety of robots, both current and future, how to right themselves? Trough painstak- ing research, careful analysis, a little bit of trial and error and a small Lego-like robot.
https://asc.ar my.mil
51
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128