search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
DRIVING THE FUTURE


LEADER-FOLLOWER


Adding robotic components to existing systems is quicker than building an unmanned system from the ground up and can improve Soldier safety. The Leader-Follower capabil- ity is a suite of robotic applique sensors and vehicle by-wire and active safety upgrades for the Palletized Load System A1 fleet. It aims to reduce the number of Soldiers required to operate a convoy, thereby decreasing the number exposed to attack. (U.S. Army photo)


While this transformation has taken place largely in the commer- cial sphere, the Army has not been able to take full advantage of these commercial trends—primarily because of the long life cycles of its systems. It usually takes the Army a lot longer to field a new truck, for example, than consumer-focused companies. By the time the new Army truck hits the field, its onboard electron- ics may already be out of date, and that makes it hard to add the latest technology—which today means robotics. Tat reality must change, and it is clear that change is on the way.


APPLIED ROBOTICS Making our systems “robotics ready” begins by ensuring that the Army acquisition community and stakeholders understand design considerations for manned systems to support subsequent robot- ics and autonomous applique kits or technologies. An applique kit is a package that can be added to an existing system to provide additional capability. Armor applique kits, for example, provide Army vehicles with a higher level of protection.


Autonomous applique kits provide advanced behavior, such as unmanned navigation and mobility. Te possibilities range from managing data to augment a Soldier’s cognitive capability, to


86


increasing system safety, to more fully autonomous mission appli- cations in bridging, breaching and other activities. Whatever the system, with the right effort, the Army can tangibly improve its ability to integrate robotic and autonomous capabilities into existing equipment and future systems and save money in the process—if program managers include the appropriate “hooks” early in the design process.


Fortunately, the hooks we need are widely available today on commercial cars and trucks. Tey include digital backbones, by-wire steering and braking, electronically controlled transmis- sions, digital controls of key actuators, telematics and active safety systems. (“By-wire” means electronically controlled—by-wire braking is controlled by a vehicle’s onboard computers, for exam- ple, as opposed to physical brakes pushed by a human.)


Industry has paved the way, and the Army can capitalize with its own investment if it carefully plans for integration now, as opposed to waiting until later and incurring higher costs because of a more complex integration. Including autonomy-enabling technologies up front in either new procurements or service-life extension programs will allow for the integration of unmanned


Army AL&T Magazine


Spring 2019


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128