CCDC’S ROAD MAP TO MODERNIZING THE ARMY: FUTURE VERTICAL LIFT
Te Aviation & Missile Center is devel- oping a FARA prototype, which will be a smaller variant than the Future Long- Range Assault Aircraft that is also in development. Tese future aircraft will have multiple types of unmanned aerial systems with lethal and nonlethal effects that can operate in communications- and GPS-denied environments.
WHAT IT NEEDS TO DO Based on multidomain operational concepts, emerging requirements
for
Future Vertical Lift include the ability to fly farther and faster, to carry heavier payloads, be easier and less expensive to sustain, to team with unmanned systems and perform certain optionally piloted missions.
Aviators need to be able to operate day or night in all types of weather, includ- ing degraded environments such as sand, smoke, smog, clouds, fog, rain, snow, and brownout or whiteout conditions. Degraded visual environment (DVE) tech- nology will enhance operations, making it possible to see the enemy without being seen, which will greatly increase lethality and survivability. Part of readiness is being able to operate in different environments, so DVE will make a critical impact when it’s fielded by increasing combat power as well as preventing mishaps.
To support aviation survivability, we are exploring innovative technologies that will warn aircrews of incoming small- arms or machine-gun fire early enough for them to take evasive action and launch a counterattack. Tese technol- ogies will outpace evolving threats with coordinated effects that will detect, avoid or defeat threats by reducing platform susceptibility and vulnerability.
A number of our efforts that will enable Future Vertical Lift to perform both
58 Army AL&T Magazine Spring 2019
UP AND OVER
UH-60 Black Hawk helicopters assigned to Task Force Shadow fly over mountainous terrain in eastern Afghanistan en route to Kabul in June 2018. Helicopters have been essential to operations in Afghanistan because of the mountainous desert landscape. (Photo by Capt. Kristoffer Sibbaluca, 101st Combat Aviation Brigade)
manned and unmanned operations link directly to the Army’s priorities, including robotics, autonomy and artificial intelli- gence (AI).
For example, we are leveraging multi- ple areas of expertise across the command, including engineers who can produce technology that allows plat- forms to perform complex navigation
and a communications system that will operate in anti-access and area denial environments. To support this effort, we started the Advanced Teaming for Tactical Aviation Operations program in FY19. Both industry and DOD have invested in this effort, so our challenge is to rapidly select the best components from industry that will work on military aircraft.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128